Skip to main content

A3 Adenosine Receptor Antagonists: History and Future Perspectives

  • Chapter
  • First Online:
A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

The potential employment of selective A3 adenosine receptor (A3AR) antagonists in the therapeutic treatment of important pathologies, such as asthma, inflammation, neurodegeneration, glaucoma and cancer, is subject to intensive studies because of the considerable role of this receptor in a number of pathophysiological processes. A wide number of compounds exerting high potency and selectivity in antagonizing the hA3 AR has been so far recognized being generally characterized by a remarkable structural diversity: nitrogen-containing aromatic monocyclic (thiazoles, thiadiazoles, 1,4-dihydropyridines, pyridines, 2-mercaptopyrimidines), bicyclic (flavonoid, isoquinoline, quinozalines, (aza)adenines), tricyclic systems (pyrazoloquinolines, triazoloquinoxalines, pyrazolotriazolopyrimidines, triazolopurines, tricyclic xanthines). The latest identification of nucleoside-derived antagonists, structurally related to the endogenous ligand, opened new frontiers for the elucidation of the therapeutic potential of this kind of ligands. Probably as a result of the enigmatic physiological role of A3AR, whose activation seems related to opposite effects concerning tissues protection in inflammatory and cancer cells, a few molecules have till now reached the preclinical investigation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avila MY, Stone RA, Civan MM (2002) Knockout of A3 adenosine receptors reduces mouse intraocular pressure. Invest Ophthalmol Vis Sci 43:3021–26

    PubMed  Google Scholar 

  • Baraldi PG, Cacciari B, Borea PA, Varani K, Pastorin G, Da Ros T, Spalluto G (2002a) Pyrazolo-triazolo-pyrimidine derivatives as adenosine receptor antagonists: a possible template for adenosine receptor subtypes? Curr Pharm Des 8:99–110

    Article  Google Scholar 

  • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, Varani K, Borea PA (2002b) 7-Substituted 5-amino-2-(2-furyl)pyrazolo[4, 3-e]-1, 2, 4-triazolo[1, 5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility. J Med Chem 45:115–26

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Fruttarolo F, Bovero A, Avitabile B, Preti D, Romagnoli R, Merighi S, Gessi S, Varani K, Borea PA (2003) Recent developments in the field of A3 adenosine receptor Antagonists. Drug Dev Res 58:315–329

    Article  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Preti D, Bovero A, Fruttarolo F, Romagnoli R, Zaid NA, Moorman AR, Varani K, Borea PA (2005a) New 2-Arylpyrazolo[4, 3-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. J Med Chem 48:5001–5008

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Preti D, Tabrizi MA, Fruttarolo F, Romagnoli R, Zaid NA, Moorman AR, Merighi S, Varani K, Borea PA (2005b) New Pyrrolo[2, 1-f]purine-2, 4-dione and Imidazo[2, 1-f]purine-2, 4-dione derivatives as potent and selective human A3 adenosine receptor Antagonists. J Med Chem 48:4697–4701

    Article  PubMed  CAS  Google Scholar 

  • Baraldi PG, Tabrizi MA, Romagnoli R, El-Kashef H, Preti D, Bovero A, Fruttarolo F, Gordaliza M, Borea PA (2006) Pyrazolo[4, 3-e][1, 2, 4]triazolo[1, 5-c]pyrimidine template: organic and medicinal chemistry approach. Curr Org Chem 10:259–275

    Article  CAS  Google Scholar 

  • Baraldi PG, Preti D, Tabrizi MA, Romagnoli R, Saponaro G, Baraldi S, Botta M, Bernardini C, Tafi A, Tuccinardi T, Martinelli A, Varani K, Borea PA (2008) Structure-activity relationship studies of a new series of imidazo[2, 1-f]purinones as potent and selective A3 adenosine receptor antagonists. Bioorg Med Chem 16:10281–10294

    Article  PubMed  CAS  Google Scholar 

  • Bevan N, Butchers PR, Cousins R, Coates J, Edgar EV, Morrison V, Sheehan MJ, Reeves J, Wilson DJ (2007) Pharmacological characterisation and inhibitory effects of (2R, 3R, 4S, 5R)-2-(6-amino-2-{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3, 4-furandiol, a novel ligand that demonstrates both adenosine A2A receptor agonist and adenosine A3 receptor antagonist activity. Eur J Pharmacol 564:219–225

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya P, Leonard JT, Roy K (2005) Exploring QSAR of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists using FA and GFA techniques. Bioorg Med Chem 13:1159–1165

    Article  PubMed  CAS  Google Scholar 

  • Biagi G, Bianucci AM, Coi A, Costa B, Fabbrini L, Giorgi I, Livi O, Micco I, Pacchini F, Santini E, Leonardi M, Nofal FA, Salernid OL, Scartonia V (2005) 2, 9-Disubstituted-N6-(arylcarbamoyl)-8-azaadenines as new selective A3 adenosine receptor antagonists: synthesis, biochemical and molecular modelling studies. Bioorg Med Chem 13:4679–4693

    Article  PubMed  CAS  Google Scholar 

  • Bolcato C, Cusan C, Pastorin G, Spalluto G, Cacciari B, Klotz KN, Morizzo E, Moro S (2008) Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes. Purinergic Signal 4:39–46

    Article  PubMed  CAS  Google Scholar 

  • Brown RA, Spina D, Page CP (2008) Adenosine. receptors and asthma. Br J Pharmacol 153:S446–56

    Article  PubMed  CAS  Google Scholar 

  • Cacciari B, Bolcato C, Spalluto G, Klotz KN, Bacilieri M, Deflorian F, Moro S (2007) Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: a complete structure–activity profile. Purinergic Signal 3:183–193

    Article  PubMed  CAS  Google Scholar 

  • Catarzi D, Colotta V, Varano F, Calabri FR, Lenzi O, Filacchioni G, Trincavelli L, Martini C, Tralli A, Christian M, Moro S (2005a) 2-Aryl-8-chloro-1, 2, 4-triazolo[1, 5-a]quinoxalin-4-amines as highly potent A1 and A3 adenosine receptor antagonists. Bioorg Med Chem 13:705–715

    Article  PubMed  CAS  Google Scholar 

  • Catarzi D, Colotta V, Varano F, Lenzi O, Filacchioni G, Trincavelli L, Martini C, Montopoli C, Moro S (2005b) 1, 2, 4-Triazolo[1, 5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substitued derivatives. J Med Chem 48:7932–7945

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G, Martini C, Trincavelli L, Lucacchini A (2000) Synthesis and structure–activity relationships of a new set of 2-arylpyrazolo[3, 4-c]quinoline derivatives as adenosine receptor antagonists. J Med Chem 43:3118–3124

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Calabri FR, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Deflorian F, Moro S (2004) 1, 2, 4-Triazolo[4, 3-a]quinoxalin-1-one moiety as an attractive scaffold to develop new potent and selective human A3 adenosine receptor antagonists: synthesis, pharmacological, and ligand–receptor modeling studies. J Med Chem 47:3580–3590

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Capelli F, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Pugliese AM, Pedata F, Schiesaro A, Morizzo E, Moro S (2007) New 2-Arylpyrazolo[3, 4-c]quinoline derivatives as potent and selective human A3 adenosine receptor antagonists. synthesis, pharmacological evaluation, and ligand–receptor modeling studies. J Med Chem 50:4061–4074

    Article  PubMed  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Traini C, Pugliese AM, Pedata F, Morizzo E, Moro S (2008) Synthesis, ligand–receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1, 2, 4-triazolo[4, 3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 16:6086–6102

    Article  PubMed  CAS  Google Scholar 

  • Cosimelli B, Greco G, Ehlardo M, Novellino E, Da Settimo F, Taliani S, La Motta C, Bellandi M, Tuccinardi T, Martinelli A, Ciampi O, Trincavelli ML (2008) Martini C (2008) derivatives of 4-Amino-6-hydroxy-2-mercaptopyrimidine as novel, potent, and selective A3 adenosine receptor antagonists. J Med Chem 51:1764–1770

    Article  PubMed  CAS  Google Scholar 

  • Cosyn L, Palaniappan KK, Kim SK, Duong HT, ZGuo G, Jacobson KA, Van Calenbergh S (2006) 2-Triazole-substituted adenosines: a new class of selective A3 adenosine receptor agonists, partial agonists, and antagonists. J Med Chem 49:7373–7383

    Article  PubMed  CAS  Google Scholar 

  • Da Settimo F, Primofiore G, Taliani S, Marini AM, La Motta C, Simorini F, Salerno S, Sergianni V, Tuccinardi T, Martinelli A, Cosimelli B, Greco G, Novellino E, Ciampi O, Trincavalle ML, Martini C (2007) 5-amino-2-phenyl[1, 2, 3]triazolo[1, 2-a][1, 2, 4]benzotriazin-1-one: a versatile scaffold to obtain potent and selective A3 adenosine receptor antagonists. J Med Chem 50:5676–5684

    Article  PubMed  CAS  Google Scholar 

  • Dooil K, Suk-In H, Dae-Sil L (2006) Triazoloquinazolines as human A3 adenosine receptor antagonists: a QSAR study. Int J Mol Sci 7:485–496

    Article  Google Scholar 

  • Drabczyn´ska A, Schumacher B, Müller CE, Karolak-Wojciechowska J, Michalak B, Pękala E, Kiec´-Kononowicz K (2003) Impact of the aryl substituent kind and distance from pyrimido[2, 1-f]purindiones on the adenosine receptor selectivity and antagonistic properties. Eur J Med Chem 38:397–402

    Article  PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Barer F, Ohana G (2000) A3 adenosine receptors: new targets for cancer therapy and chemoprotection. Drug Dev Res 50:101–117

    Article  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz K-N, Linden J (2001) Nomenclature and classification of adenosine receptors. Pharm Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Gao ZG, Kim SK, Biadatti T, Chen W, Lee K, Barak D, Kim SG, Johnson CR, Jacobson KA (2002) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45:4471–4484

    Article  PubMed  CAS  Google Scholar 

  • Gao ZG, Blaustein J, Gross AS, Melman N, Jacobson KA (2003) N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65:1675–1684

    Article  PubMed  CAS  Google Scholar 

  • Gao ZG, Jeong LS, Moon HR, Kim HO, Choi WJ, Shin DH, Elhalem E, Comin MJ, Melman N, Mamedova L, Gross AS, Rodriguez JB, Jacobson KA (2004) Structural determinants of efficacy at A3 adenosine receptors: modification of the ribose moiety. Biochem Pharmacol 67:893–901

    Article  PubMed  CAS  Google Scholar 

  • Gao ZG, Joshi BV, Klutz AM, Kim SK, Lee HW, Kim HO, Jeong LS, Jacobson KA (2006) Conversion of A3 adenosine receptor agonists into selective antagonists by modification of the 5’-ribofuran-uronamide moiety. Bioorg Med Chem Lett 16:596–601

    Article  PubMed  CAS  Google Scholar 

  • Gatta F, Del Giudice MR, Borioni A, Borea PA, Dionisotti S, Ongini (1993) Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines and 1,2,4-triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem 28:569–577

    Google Scholar 

  • Gessi S, Varani K, Merighi S, Morelli A, Ferrari D, Leung E, Baraldi PG, Spallato G, Borea PA (2001) Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 134:116–126

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Cattabriga E, Avitabile A, Gafa’ R, Lanza G, Cavazzini L, Bianchi N, Roberto G, Carlo F, Liboni A, Gullini S, Leung E, Mac-Lennan S, Borea PA (2004a) Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 10:5895–5901

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004b) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719

    Article  PubMed  CAS  Google Scholar 

  • Hu PS, Lindgren E, Jacobson KA, Fredholm BB (1987) Interaction of dihydropyridine calcium channel agonists and antagonists with adenosine receptors. Pharmacol Toxicol 61:121–125

    Article  PubMed  CAS  Google Scholar 

  • Ismail NA, Shaheen AA, El-Sawalhi MM, Megahed YM (1995) Effect of calcium channel antagonists in modifying the inhibitory influence of adenosine on insulin secretion. Arzn Forsch Drug Res 45:865–868

    CAS  Google Scholar 

  • Karton Y, Jiang JL, Ji X-D, Melman N, Olah ME, Stiles GL, Jacobson KA (1996) Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. J Med Chem 39:2293–2301

    Article  PubMed  CAS  Google Scholar 

  • Kim HO, Ji XD, Melman N, Olah ME, Stiles GL, Jacobson KA (1994) Structure–activity relationships of 1, 3-dialkylxanthine derivatives at rat A3 adenosine receptors. J Med Chem 37:3373–3382

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Ji X-D, Jacobson KA (1996) Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) are selective for the human A3 receptor subtype. J Med Chem 39:4142–4148

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, de Zwart M, Chang L, Moro S, von Frijtag Drabbe Kuenzel J, Melman N, Ijzerman AP, Jacobson KA (1998) Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A2B and A3 receptor subtypes. J Med Chem 41:2835–2845

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Gao ZG, Jeong LS, Jacobson KA (2006) Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. J Mol Graph Model 25:562–577

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Den Hartog JAJ, Koomen G-J, Wanner MJ, Feenstra RW (2006) 2-Substituted-6-trifluoromethyl purine derivatives with adenosine-A3 antagonistic activity. Solvay Pharmaceuticals: WO 2006027365

    Google Scholar 

  • Lenzi O, Colotta V, Catarzi D, Varano F, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Varani K, Marighetti F, Morizzo E, Moro S (2006) 4-Amido-2-aryl-1, 2, 4-triazolo[4, 3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation, and ligand–receptor modeling studies. J Med Chem 49:3916–3925

    Article  PubMed  CAS  Google Scholar 

  • Li AH, Moro S, Melman N, Ji XD, Jacobson KA (1998) Structure-activity relationships and molecular modelling of 3, 5-diacyl-2, 4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 41:3186–3201

    Article  PubMed  CAS  Google Scholar 

  • Li AH, Moro S, Forsyth N, Melman N, Ji XD, Jacobson KA (1999) Synthesis, CoMFA analysis, and receptor docking of 3, 5-diacyl-2, 4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 42:706–721

    Article  PubMed  CAS  Google Scholar 

  • Lim MH, Kim HO, Moon HR, Lee SJ, Chun MW, Gao ZG, Melman N, Jacobson KA, Kim JH, Jeong LS (2003) Design, synthesis and binding affinity of 3’-fluoro analogues of Cl-IB-MECA as adenosine A3 receptor ligands. Bioorg Med Chem Lett 13:817–820

    Article  PubMed  CAS  Google Scholar 

  • Maconi A, Pastorin G, Da Ros T, Spalluto G, Gao ZG, Jacobson KA, Baraldi PG, Cacciari B, Varani K, Moro S, Borea PA (2002) Synthesis, biological properties, and molecular modeling investigation of the first potent, selective, and water-soluble human A3 adenosine receptor antagonist. J Med Chem 45:3579–3582

    Article  PubMed  CAS  Google Scholar 

  • Melman A, Wang B, Joshi BV, Gao Z-G, de Castro S, Heller CL, Kim S-K, Jeong LS, Jacobson KA (2008) Selective A3 adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. Bioorg Med Chem 16:8546–8556

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Uloglou C, Leung E, Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    Article  PubMed  CAS  Google Scholar 

  • Miwatashi S, Arikawa Y, Matsumoto T, Uga K, Kanzaki N, Yn I, Ohkawa S (2008) Synthesis and biological activities of 4-phenyl-5-pyridyl-1, 3-thiazole derivatives as selective adenosine A3 antagonists. Chem Pharm Bull 56:1126–1137

    Article  PubMed  CAS  Google Scholar 

  • Moro S, van Rhee AM, Sanders LH, Jacobson KA (1998) Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. J Med Chem 41:46–52

    Article  PubMed  CAS  Google Scholar 

  • Moro S, Braiuca P, Deflorian F, Ferrari C, Pastorin G, Cacciari B, Baraldi PG, Varani K, Borea PA, Spalluto G (2005) Combined target-based and ligand-based drug design approach as a tool to define a novel 3D-pharmacophore model of human A3 adenosine receptor antagonists: pyrazolo[4, 3-e]1, 2, 4-triazolo[1, 5-c]pyrimidine derivatives as a key study. J Med Chem 48:152–162

    Article  PubMed  CAS  Google Scholar 

  • Müller CE, Thorand M, Qurishi R, Diekmann M, Jacobson KA, Padgett WL, Daly JW (2002a) Imidazo[2, 1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A2A- and A3- adenosine receptor antagonists. J Med Chem 45:3440–3450

    Article  PubMed  CAS  Google Scholar 

  • Müller CE, Diekmann M, Thorand M, Ozola V (2002b) [3H]8-Ethyl-4-methyl-2-phenyl-(8R)-4, 5, 7, 8-tetrahydro-1H-imidazo[2, 1-i]-purin-5-one ([3H]PSB-11), a novel high affinity antagonist radioligand for human A3 adenosine receptors. Bioorg Med Chem Lett 12:501–503

    Article  PubMed  Google Scholar 

  • Müller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462

    Article  PubMed  Google Scholar 

  • Novellino E, Cosimelli B, Ehlardo M, Greco G, Iadanza M, Lavecchia A, Rimoli MG, Sala A, Da Settimo A, Primofiore G, Da Settimo F, Taliani S, La Motta C, Klotz KN, Tuscano D, Trincavelli ML, Martini C (2005) 2-(Benzimidazol-2-yl)quinoxalines: a novel class of selective antagonists at human A1 and A3 adenosine receptors designed by 3D database searching. J Med Chem 48:8253–8260

    Article  PubMed  CAS  Google Scholar 

  • Ohana G, Bar-yehuda S, Barer F, Fishman P (2001) Differential Effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Phys 186:19–23

    Article  CAS  Google Scholar 

  • Okamura K, Kurogi Y, Nishikawa H, Hashimoto K, Fujiwara H, Nagao Y (2002) 1, 2, 4-triazolo[5, 1-i]purine derivatives as highly potent and selective human adenosine A3 receptor ligands. J Med Chem 45:3703–3708

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, Kurogi Y, Hashimoto K, Sato S, Nishikawa H, Kiryu K, Nagao Y (2004a) Structure-activity relationships of adenosine A3 receptor ligands: new potential therapy for the treatment of glaucoma. Bioorg Med Chem Lett 14:3775–3779

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, Kurogi Y, Hashimoto K, Nagao Y (2004b) Facile synthesis of fused 1, 2, 4-triazolo[1, 5-c]-pyrimidine derivatives as human adenosine A3 receptor ligands. Bioorg Med Chem Lett 14:2443–2446

    Article  PubMed  CAS  Google Scholar 

  • Me Olah, Stiles GL (1995) Adenosine receptor subtypes: characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol 35:581–606

    Article  Google Scholar 

  • Ongini E, Dionisotti S, Gessi S, Irenius E, Fredholm BB (1999) Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 359:7–10

    Article  PubMed  CAS  Google Scholar 

  • Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Muller CE (2003) 2-Phenylimidazo[2, 1-i]purin-5-ones: structure-activity relationships and characterization of potent and selective inverse agonists at human A3 adenosine receptors. Bioorg Med Chem 11:347–356

    Article  PubMed  CAS  Google Scholar 

  • Pastorin G, Da Ros T, Bolcato C, Montopoli C, Moro S, Cacciari B, Baraldi PG, Varani K, Borea PA, Spalluto G (2006) Synthesis and Biological Studies of a New Series of 5 Heteroarylcarbamoylaminopyrazolo[4, 3-e]1, 2, 4-triazolo[1, 5-c]pyrimidines as Human A3 Adenosine Receptor Antagonists. Influence of the Heteroaryl Substituent on Binding Affinity and Molecular Modeling Investigations. J Med Chem 49:1720–1729

    Article  PubMed  CAS  Google Scholar 

  • Perreira M, Jiang J, Klutz AM, Gao ZG, Shainberg A, Lu C, Thomas CJ, Jacobson KA (2005) Reversine and its 2-substituted adenine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 48:4910–4918

    Article  PubMed  CAS  Google Scholar 

  • Press NJ, Keller TH, Tranter P, Beer D, Jones K, Faessler A, Heng R, Lewis C, Howe T, Gedeck P, Mazzoni L, Fozard JR (2004) New highly potent and selective adenosine A3 receptor antagonists. Curr Top Med Chem 4:863–870

    Article  PubMed  CAS  Google Scholar 

  • Priego EM, von Frijtag Drabbe Kuenzel J, Ijzerman AP, Camarasa MJ, Pérez-Pérez MJ (2002) Pyrido[2, 1-f]purine-2, 4-dione derivatives as a novel class of highly potent human A3 adenosine receptor antagonists. J Med Chem 45:3337–3344

    Article  PubMed  CAS  Google Scholar 

  • Priego EM, Pérez-Pérez MJ, von Frijtag Drabbe Kuenzel, de Vries H, Ijzerman AP, Camarasa MJ, Martin-Santamaria S (2008) Selective human adenosine A3 antagonists based on Pyrido [2,1-f]purine-2,4-diones: novel features of hA3 antagonist binding. Chem Med Chem 3:111–119

    Google Scholar 

  • Ravn J, Qvortrup K, Rosenbohm C, Koch T (2007) Design, synthesis, and biological evaluation of LNA nucleosides as adenosine A3 receptor ligands. Bioorg Med Chem 15:5440–5447

    Article  PubMed  CAS  Google Scholar 

  • Saki M, Tsumuki H, Nonaka H, Shimada J, Ichimura M (2002) KF26777 (2-(4-bromophenyl)-7, 8-dihydro-4-propyl-1H-imidazo[2, 1-i]purin-5(4H)-one dihydrochloride), a new potent and selective adenosine A3 receptor antagonist. Eur J Pharmacol 444:133–144

    Article  PubMed  CAS  Google Scholar 

  • Schlotzer-Schrehardt U, Zenkel M, Decking U, Haubs D, Kruse FE, Junemann A, Coca-Prados M, Naumann GO (2005) Selective upregulation of the A3 adenosine receptor in eyes with pseudoexfoliation syndrome and glaucoma. Invest Ophthalmol Vis Sci 46:2023–2034

    Article  PubMed  Google Scholar 

  • Siddiqi SM, Jacobson KA, Esker JL, Olah ME, Ji XD, Melman N, Tiwari KN, Secrist JA III, Schneller SW, Cristalli G, Stiles GL, Cr J, Ijzerman AP (1995) Search for new purine- and ribose-modified adenosine analogues as selective agonists and antagonists at adenosine receptors. J Med Chem 38:1174–1188

    Article  PubMed  CAS  Google Scholar 

  • Tafi A, Bernardini C, Botta M, Corelli F, Andreini M, Martinelli A, Ortore G, Baraldi PG, Fruttarolo F, Borea PA, Tuccinardi T (2006) Pharmacophore based receptor modeling: the case of adenosine A3 receptor antagonists. An approach to the optimization of protein models. J. Med Chem 49:4085–4097

    Article  PubMed  CAS  Google Scholar 

  • Tchilibon S, Kim SK, Gao ZG, Harris BA, Blaustein JB, Gross AS, Duong HT, Melman N, Jacobson KA (2004) Exploring distal regions of the A3 adenosine receptor binding site: sterically constrained N6-(2-phenylethyl)adenosine derivatives as potent ligands. Bioorg Med Chem 12:2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Tchilibon S, Joshi BV, Kim SK, Duong HT, Gao ZG, Jacobson KA (2005) (N)-Methanocarba, 2, N 6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists. J Med Chem 48:1745–1758

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Siddiqi SM, Olah ME, Ji XD, Melman N, Bellamkonda K, Meshulmam Y, Stiles GL, Kim HO (1995) Structure-activity relationships of 9-alkyladenine and ribose modified adenosine derivatives at rat A3 adenosine receptors. J Med Chem 38:1720–1735

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors : novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191

    Article  PubMed  CAS  Google Scholar 

  • Ji XD, Melman N, Jacobson KA (1996) Interaction of flavonoids and other phytochemicals with adenosine receptors. J Med Chem 39:781–788

    Article  PubMed  CAS  Google Scholar 

  • Jiang JL, van Rhee AM, Melman N, Ji XD, Jacobson KA (1996) 6-Phenyl-1, 4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 39:4667–4675

    Article  PubMed  CAS  Google Scholar 

  • Jiang JL, van Rhee AM, Chang L, Patchornik A, Ji XD, Evans P, Melman N, Jacobson KA (1997) Structure activity relationships of 4-(phenylethynyl)-6-phenyl-1, 4-dihydropyridines as highly selective A3 adenosine receptor antagonists. J Med Chem 40:2596–2608

    Article  PubMed  CAS  Google Scholar 

  • Jiang JL, Li AH, Jang SY, Chang L, Melman N, Moro S, Ji XD, Lokovsky EB, Clardy JC, Jacobson KA (1999) Chiral resolution and stereospecificity of 6-phenyl-4-phenylethynyl-1, 4-dihydropyridines as selective A3 adenosine receptor antagonists. J Med Chem 42:3055–3065

    Article  PubMed  CAS  Google Scholar 

  • Jeong LS, Choe SA, Gunaga P, Kim HO, Lee HW, Lee SK, Tosh DK, Patel A, Palaniappan KK, Gao ZG, Jacobson KA, Moon HR (2007) Discovery of a new nucleoside template for human A3 adenosine receptor ligands: d-4′-thioadenosine derivatives without 4′-hydroxymethyl group as highly potent and selective antagonists. J Med Chem 50:3159–3162

    Article  PubMed  CAS  Google Scholar 

  • Jeong LS, Lee HW, Kim HO, Tosh DK, Pal S, Choi WJ, Gao ZGu, Patel AR, Williams W, Jacobson KA, Kim H-D (2008a) Structure–activity relationships of 2-chloro-N6-substituted-40-thioadenosine-5’-N,N-dialkyluronamides as human A3 adenosine receptor antagonists. Bioorg SSR-161421 and SAR-137272. Med Chem Lett 18:1612–1616

    Google Scholar 

  • Jeong LS, Pal S, Choe SA, Choi WJ, Jacobson KA, Gao Z-G, Klutz AM, Hou X, Kim HO, Lee HW, Lee SK, Tosh DK, Moon HR (2008b) Structure–activity relationships of truncated D- and L-4′-thioadenosine derivatives as species-independent A3 adenosine receptor antagonists. J Med Chem 51:6609–6613

    Article  PubMed  CAS  Google Scholar 

  • Joshi BV, Jacobson KA (2005) Purine derivatives as ligands for A3 adenosine receptors. Curr Topic Med Chem 5:1275–1295

    Google Scholar 

  • Jung K-Y, Kim S-K, Gao Z-G, Gross AS, Melman N, Jacobson KA, Kim YC (2004) Structure-activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg Med Chem 12:613–623

    Article  PubMed  CAS  Google Scholar 

  • Van Muijlwijk-Koezen JE, Timmerman H, Link R, von der Goot H, Ijzerman AP (1998a) A novel class of adenosine A3 receptor ligands. 1. 3-(2-pyridinyl)isoquinoline derivatives. J Med Chem 41:3987–3993

    Article  PubMed  Google Scholar 

  • Van Muijlwijk-Koezen JE, Timmerman H, Link R, von der Goot H, Ijzerman AP (1998b) A novel class of adenosine A3 receptor ligands. 2. Structure activity profile of a series of isoquinoline and quinazoline compounds. J Med Chem 41:3994–4000

    Article  PubMed  Google Scholar 

  • Van Muijlwijk-Koezen JE, Timmerman H, Link R, von der Goot H, Menge WMPB, von Frijtag von Drabbe Künzel JK, de Groote M, Ijzerman AP (2000) Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A3 receptor. J Med Chem 43:2227–2238

    Google Scholar 

  • Van Muijlwijk-Koezen JE, Timmerman H, Vollinga RC, von Drabbe Kunzel JF, de Groote M, Visser S, Ijzerman AP (2001) Thiazole and thiazole analogues as novel class of adenosine receptor antagonists. J Med Chem 44:749–762

    Article  PubMed  CAS  Google Scholar 

  • Van Rhee AM, Jiang JL, Melman N, Olah ME, Stiles GL, Jacobson KA (1996) Interacton of 1, 4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivitry for A3 receptors. J Med Chem 39:2980–2989

    Article  PubMed  Google Scholar 

  • Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA (2000) [3H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Mol Pharmacol 57:968–75

    PubMed  CAS  Google Scholar 

  • Volpini R, Costanzi S, Lambertucci C, Vittori S, Klotz KN, Lorenzen A, Cristalli G (2001) Introduction of alkynyl chains on C-8 of adenosine led to very selective antagonists of the A3 adenosine receptor. Bioorg Med Chem Lett 11:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Xie R, Li A-H, Ji X-D, Melman N, Olah ME, Stiles GL, Jacobson KA (1999) Selective A3 adenosine receptor antagonists: water-soluble 3, 5-diacyl-1, 2, 4-trialkylpyridinium salts and their oxidative generation from dihydropyridine precursors. J Med Chem 42:4232–4238

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Avila MY, Peterson-Yantorno K, Coca-Prados M, Stone RA, Jacobson KA, Civan MM (2005) The cross-species A3 adenosine-receptor antagonist MRS 1292 inhibits adenosine-triggered human nonpigmented ciliary epithelial cell fluid release and reduces mouse intraocular pressure. Curr Eye Res 30:747–754

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Giovanni Baraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baraldi, P.G., Romagnoli, R., Saponaro, G., Baraldi, S., Tabrizi, M.A., Preti, D. (2010). A3 Adenosine Receptor Antagonists: History and Future Perspectives. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_7

Download citation

Publish with us

Policies and ethics