Skip to main content

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

Abstract

As all classic methods for kinetic analysis of data from thermal analysis experiments, the nonparametric kinetics method, NPK, assumes that the general expression for the reaction rate of a simple reaction is

$$ {\dot{\alpha } = g(\alpha ) \cdot f(T)} $$
(16.1)

where g(α) symbolizes the kinetic model of the process and f(T) accounts for the temperature dependence of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serra R, Nomen R, Sempere J (1998) A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta 316:37–45

    Article  CAS  Google Scholar 

  2. Serra R, Nomen R, Sempere J (1998) The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim 52(3):933–943

    Article  CAS  Google Scholar 

  3. Sempere J, Nomen R, Serra R (1999) Progress in non-parametric kinetics. J Therm Anal Calorim 56(2):843–849

    Article  CAS  Google Scholar 

  4. Sempere J, Nomen R, Serra R, Soravilla J (2002) The NPK method: an innovative approach for kinetic analysis of data from thermal analysis and calorimetry. Thermochim Acta 388(1–2):407–414

    Article  CAS  Google Scholar 

  5. Nomen R, Sempere J, Serra E, de Armas D (2005) Aplicación del método NPK a la determinación de la cinética de descomposición del triperòxido de triciclohexilideno. Afinidad 62(519):520–524

    Google Scholar 

  6. Sempere J, Nomen R, Serra E, Sempere B, Guglielmi D (2011) Thermal behavior of oxidation of TiN and TiC nanoparticles. J Therm Anal Calorim 105(2):719–726

    Article  CAS  Google Scholar 

  7. Sewry JD, Brown ME (2002) “Model-free” kinetic analysis? Thermochim Acta 390 (1–2):217–225

    Article  CAS  Google Scholar 

  8. Vlase T, Vlase G, Doca N, Bolcu C (2005) Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim 80(1):59–64

    Article  CAS  Google Scholar 

  9. Vlase G, Vlase T, Chiriac A, Doca N (2005) About compensation effect by thermal decomposition of some catalyst precursors. J Therm Anal Calorim 80(1):87–90

    Article  CAS  Google Scholar 

  10. Vlase T, Vlase G, Doca N (2005) Kinetics of thermal decomposition of alkaline phosphates. J Therm Anal Calorim 80(1):207–210

    Article  CAS  Google Scholar 

  11. Vlase G, Vlase T, Doca N (2005) Thermal stability of food additives of glutamate and benzoate type. J Therm Anal Calorim 2:425–428

    Article  Google Scholar 

  12. Ioiţescu A, Vlase G, Vlase T, Doca N (2007) Kinetics of decomposition of different acid calcium phosphates. J Therm Anal Calorim 88(1):121–125

    Article  Google Scholar 

  13. Vlase G, Vlase T, Mondra D, Doca N (2007) Thermal behaviour of some industrial and food dyes. J Therm Anal Calorim 88(2):389–393

    Article  CAS  Google Scholar 

  14. Feher L, Jurconi B, Vlase G, Vlase T, Doca N (2007) Decomposition kinetic of a synthetic oil adsorbed on different silico-alumina. J Therm Anal Calorim 88(3):621–624

    Article  CAS  Google Scholar 

  15. Vlase T, Pǎcurariu C, Lazǎu RI, Lazǎn I (2007) Kinetic studies of the crystallization process of glass-ceramics based on basalt. J Therm Anal Calorim 88(3):625–629

    Article  CAS  Google Scholar 

  16. Vlase G, Vlase T, Birta N, Doca N (2007) Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim 88(3):631–635

    Article  CAS  Google Scholar 

  17. Vlase G, Vlase T, Tudose R, Costişor O, Doca N (2007) Kinetic of decomposition of some complexes under non-isothermal conditions. J Therm Anal Calorim 88(3):637–640

    Article  CAS  Google Scholar 

  18. Vlase T, Doca N, Vlase G, Bolcu C, Borcan F (2008) Kinetics of non-isothermal decomposition of three IRGANOX-type antioxidants. J Therm Anal Calorim 92(1):15–18

    Article  CAS  Google Scholar 

  19. Vlase G, Vlase T, Doca N (2008) Thermal behavior of some phenitoine pharmaceuticals. J Therm Anal Calorim 92(1):259–262

    Article  CAS  Google Scholar 

  20. Birta N, Doca N, Vlase G, Vlase T (2008) Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim 92(2):635–638

    Article  CAS  Google Scholar 

  21. Doca N, Vlase G, Vlase T, Ilia G (2008) Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition. J Therm Anal Calorim 94(2):441–445

    Article  CAS  Google Scholar 

  22. Tiţa B, Marian E, Tiţa D, Vlase G, Doca N, Vlase T (2008) Comparative kinetic study of decomposition of some diazepine derivatives under isothermal and non-isothermal conditions. J Therm Anal Calorim 94(2):447–452

    Article  Google Scholar 

  23. Doca N, Vlase G, Vlase T, Perţa M, Ilia G, Plesu N (2009) Thermal analysis using kinetic parameters obtained under non-isothermal conditions in air. Chin J Chem 27(10):1919–1924

    Article  Google Scholar 

  24. Vlase G, Vlase T, Doca N, Perţa M, Ilia G, Plesu N (2009) Thermal behavior of a sol–gel system containing aniline and organic phosphonates. J Therm Anal Calorim 97(2):473–478

    Article  CAS  Google Scholar 

  25. Doca N, Vlase G, Vlase T, Perţa M, Ilia G, Plesu N (2009) TG, EGA and kinetic study by non-isothermal decomposition of a polyaniline with different dispersion degree. J Therm Anal Calorim 97(2):479–484

    Article  CAS  Google Scholar 

  26. Fuliaş A, Vlase G, Vlase T, Doca N (2010) Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim 99(3):987–992

    Article  Google Scholar 

  27. Ilia G, Drehe M, Vlase T, Vlase G, Macarie L, Doca N (2010) Thermal behavior of titania grafted with phosphonic acids under non-isothermal conditions. J Therm Anal Calorim 100(3):917–923

    Article  CAS  Google Scholar 

  28. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404(1–2):163–176

    Article  CAS  Google Scholar 

  29. Várhegyi G, Pöppl L, Földvári I (2003) Kinetics of the oxidation of bismuth tellurite, Bi2TeO5: empirical model and least squares evaluation strategies to obtain reliable kinetic information. Thermochim Acta 399(1–2):225–239

    Article  Google Scholar 

  30. Heal GR (2005) A Generalisation of the non-parametric, NPK (SVD) kinetic analysis method: Part 2. Non-isothermal experiments. Thermochim Acta 426(1–2):23–31

    Article  CAS  Google Scholar 

  31. Smith KW, Cain FW, Talbot G (2005) Kinetic analysis of nonisothermal differential scanning calorimetry of 1,3-dipalmitoyl-2-oleoylglycerol. J Agric Food Chem 53(8):3031–3040

    Article  CAS  Google Scholar 

  32. Stojakovic D, Rajic N, Logar NZ, Kaucic V (2006) A kinetic study of the thermal degradation of ammonium species inside a 3D zincophosphate. Thermochim Acta 449(1–2):42–46

    Article  CAS  Google Scholar 

  33. Stojakovic D, Rajic N, Mrak M, Kaucic V (2007) A kinetic study of the thermal degradation of cetyltrimethylammonium bromide inside the mesoporous SBA-3 molecular sieve. J Serb Chem Soc 72(12):1309–1319

    Article  CAS  Google Scholar 

  34. Rajic N, Stojakovic D, Mrak M, Kaucic V (2008) A kinetic study of the thermal degradation of cetyl-trimethylammonium bromide inside the mesoporous SBA-3 molecular sieve. Stud Surf Sci Catal 174(2):977–980

    Article  Google Scholar 

  35. Iliescu S, Pascariu A, Plesu N, Popa A, Macarie L, Ilia G (2009) Unconventional method used in synthesis of polyphosphoesters. Polym Bull 63(4):485–495

    Article  CAS  Google Scholar 

  36. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  37. Šesták J, Berggren G (1971) Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta 3:1–12

    Article  Google Scholar 

  38. Koga N, Šesták J, Málek J, Tanaka H (1993) Data treatment in nonisothermal kinetics and diagnostic limits of phenomenological models. Netsu Sokutei 20(4):210–223

    Google Scholar 

  39. Criado JM, Málek J, Ortega A (1989) Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 147(2):377–385

    Article  CAS  Google Scholar 

  40. Gotor FJ, Criado JM, Málek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104(46):10777–10782

    Article  CAS  Google Scholar 

  41. Brown DJ (1940) The thermal decomposition of benzoyl peroxide. J Am Chem Soc 62(10):2657–2659

    Article  CAS  Google Scholar 

  42. Cass WE (1946) Kinetics of the decomposition of benzoyl peroxide in various solvents. J Am Chem Soc 68(10):1976–1982

    Article  CAS  Google Scholar 

  43. Bartlett PD, Nozaki K (1947) The decomposition of benzoyl peroxide in solvents. II. Ethers, alcohols, phenols and amines. J Am Chem Soc 69(10):2299–2306

    Article  CAS  Google Scholar 

  44. Barrett KEJ (1967) Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter. J Appl Polym Sci 11(9):1617–1626

    Article  CAS  Google Scholar 

  45. Zamana F, Beezer AE, Mitchell JC, Clarkson Q, Elliot J, Davis AF, Willson RJ (2001) The stability of benzoyl peroxide by isothermal microcalorimetry. Int J Pharm 227(1–2):133–137

    Article  Google Scholar 

  46. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  47. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc J 38:1881–1886

    Article  CAS  Google Scholar 

  48. Akahira T, Sunose T (1971) Trans. Joint convention of four electrical institutes, research report Chiba Institute of Technology. Sci Technol 16:22–31

    Google Scholar 

  49. Friedman HL (1956) Kinetics of thermal degradation of char-forming plastics from thermogravimetry—application to phenolic resins. J Polym Sci 66:183

    Google Scholar 

  50. Thomas PS, Šimon P, Ray AS (2003) The effect of thermal history on the morphology of nickel sulphide. J Therm Anal Calorim 72:801–809

    Article  CAS  Google Scholar 

  51. Bishop DW, Thomas PS, Ray AS, Šimon P (2001) Two-stage kinetic model for the α–β phase recrystallisation in nickel sulphide. J Therm Anal Calorim 64:201–210

    Article  CAS  Google Scholar 

  52. Thomas P, Šimon P (2005) A pseudo-isothermal kinetic analysis of the recrystallisation of nickel sulphide measured by non-isothermal DSC. J Therm Anal Calorim 80:77–80

    Article  CAS  Google Scholar 

  53. Mirko Hrovat M (2009) Baseline fit. Matlab central. http://www.mathworks.com/matlabcentral/fileexchange/24916-baseline-fit

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julià Sempere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sempere, J., Nomen, R., Serra, E., Sempere, B. (2012). Nonparametric Kinetic Methods. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_16

Download citation

Publish with us

Policies and ethics