Skip to main content

Oxide Superconductors as Model Systems for Studying Phase Relations, Stoichiometry, Reaction Kinetics, and Unconventional Glass Formability

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

Abstract

The escalation of thermochemical research in the 1990s became a main engine in the search for yet new sorts of ceramic superconducting material, generally called the high-T c superconductors (HTSC), with a transition temperature (T c) far above the boiling temperature of nitrogen (77 K). Although the research boom has gradually expired, the commercial applications missed the initially promised contractions of magnetically levitated trains, powerful electric motors, or superefficient power transmission. However, thermal analysis evidently played a significant role, so that it became also reflected in extended publication activity in relevant journals, not excluding Thermochimica Acta and Journal of Thermal Analysis. The progress of HTSC was associated with better understanding of phase diagrams, starting from the oxide (Cu, Ba, Y), their binaries through pseudo-binaries to the Y–Ba–Cu–O pseudo-ternaries, yielding an improvement in the construction of phase diagrams. The research finally moved to the novel families of HTSC in the Bi–Ca–Sr–Cu–O systems and the determination of their thermodynamic properties. Increased attention was paid to the improvement of calculation methods and simulation procedures of the phases involved, and finally a series of improved thermodynamic data was published (Table 22.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozawa T (1991) Application of thermal analysis to kinetic study of superconducting oxide formation. Thermochim Acta 133:11

    Article  Google Scholar 

  2. Kamimoto M (1991) Thermoanalytical observations on synthesis of oxide superconductors. Thermochim Acta 174:153

    Article  CAS  Google Scholar 

  3. Gallagher P, Ozawa T, Šesták J (eds) (1991) Oxide high T c superconductor. Thermochim Acta 174:1–324

    Google Scholar 

  4. Leskela M (ed) (1997) High temperature superconductors. J Therm Anal Calorim 48(5)

    Google Scholar 

  5. Roth RS (1988) Ceramic superconductors. In: Roth RS (ed) Phase diagrams, vol II. American Ceramic Society, Westerville, OH

    Google Scholar 

  6. Šesták J (1992) Phase diagrams of CuO-based superconductors. Pure Appl Chem 64:125

    Article  Google Scholar 

  7. Šesták J, Moiseev G, Tzagareishvili D (1994) Oxide-phase simulated thermodynamics and calculation of thermochemical properties of compounds auxiliary to Y–Ba–Cu–O HTSC. Jpn J Appl Phys 33:97

    Article  Google Scholar 

  8. Ilynych N, Zaitseva S, Moiseev G, Šesták J, Vatolin N (1995) Final account of the thermochemical properties of complex oxides in the Y–Ba–Cu–O system. Thermochim Acta 266:285

    Article  CAS  Google Scholar 

  9. Moiseev G, Šesták J, Jzukovski V, Garipova I (1998) Some calculation methods as a tool to revise thermodynamic data for the SrCuO2, Sr2CuO3, Sr14Cu24O41 and SrCu2O2 double oxides. Thermochim Acta 318:201

    Article  CAS  Google Scholar 

  10. Moiseev GK, Leitner J, Šesták J, Zhukovsky V (1996) Empirical dependences of the standard enthalpy of formation for related inorganic compounds enhancing glass formers. Thermochim Acta 280(281):511–521

    Article  Google Scholar 

  11. Moiseev GK, Šesták J (1995) Some calculation methods for estimation of thermodynamical properties of inorganic compounds. Prog Cryst Growth Charact 30:23–81

    Article  CAS  Google Scholar 

  12. Moiseev GK, Vatolin N, Štěpánek B, Šesták J (1995) Estimation of average heat capacities of condensed phase transformation products in the Y–Ba–Cu–O system. J Therm Anal 43:469–476

    Article  CAS  Google Scholar 

  13. Šesták J, Sedmidubský D, Moiseev G (1997) Some thermodynamic aspect of high T c superconductors. J Therm Anal 48:1105

    Article  Google Scholar 

  14. Moiseev G, Vatolin N, Šesták J (1997) Thermodynamic simulation in the Y–Ba–Cu–O system containing superconducting YBa2Cu3O y phase. J Min Metal (Bor, Serbia) 33:105

    Google Scholar 

  15. Moiseev G, Šesták J, Ilynych N, Zaitseva S, Vatolin V (1997) Standard enthalpies of formation for some phases in the YBaCuO system. Netsu Sokutei (Jpn J Therm Anal) 24:158

    CAS  Google Scholar 

  16. Šesták J, Lipavský P (2003) Chronicle of high-T c oxide superconductors. J Therm Anal Calorim 74:365

    Article  Google Scholar 

  17. Strnad Z, Šesták J (1991) On continuous oxide superconductor preparation through melt fast solidification and glass formation. Thermochim Acta 174:253

    Article  CAS  Google Scholar 

  18. Šesták J (1991) Oxide melt fast solidification as a route to prepare HTS. In: Narlicar AV (ed) Studies of HTSC, vol 7. Nova Science, New York, p 23

    Google Scholar 

  19. Šesták J (1991) Phase diagram, glass formation and crystallization in the Bi–Ca–Sr–Cu–O superconductive system. J Therm Anal 36:1639

    Google Scholar 

  20. Salama K, Lee DF (1994) Progress in melt texturing of YBa2Cu3O x superconductor: a review. Supercond Sci Technol 7:193

    Article  Google Scholar 

  21. Balek V, Šesták J (1988) Emanation thermal analysis of YBCO superconductor preparation and characterization. Thermochim Acta 133:23

    Article  CAS  Google Scholar 

  22. Staszcuk P, Sternik D, Chadzynski GW (2003) Determination of total heterogeneity and fractal dimensions of high-temperature superconductors. J Therm Anal Calorim 71:173

    Article  Google Scholar 

  23. Moiseev G, Šesták J, Štěpánek B (1994) Possible compositional changes of the YBa2Cu3O x surface layer on the boundary with negative charge current. Ceramics-Silikáty (Prague) 38:143

    CAS  Google Scholar 

  24. Bardeen J, Cooper LN, Schieffer JR (1957) Theory of superconductivity. Phys Rev 108:1175

    Article  CAS  Google Scholar 

  25. Buckel W, Hilsch R (1956) Supraleitung und elektrischer widerstand neuartiger zinn-wismut-legierungen. Z Phys 146:27

    Article  CAS  Google Scholar 

  26. Collver MM, Hammond RH (1973) Superconductivity in amorphous transition-metal alloy films. Phys Rev Lett 30:92

    Article  CAS  Google Scholar 

  27. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZL, Wang YQ, Chu CW (1987) Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Phys Rev Lett 58:908

    Article  CAS  Google Scholar 

  28. Maeda H, Tanaka Y, Fukutomi M, Asano T (1988) A new high-T c oxide superconductor without a rare earth element. Jpn J Appl Phys 27:L209

    Article  CAS  Google Scholar 

  29. Komatsu T, Imai K, Matusita K, Ishii M, Takata M, Yamashita T (1987) Crystalline phases in superconducting Ba–Y–Cu–O with high-T c prepared by melting method. Jpn J Appl Phys 26:L1272

    Article  CAS  Google Scholar 

  30. Dumbaugh WH (1986) Heavy metal oxide glasses containing Bi2O3. Phys Chem Glasses 27:119

    CAS  Google Scholar 

  31. Komatsu T, Ohki T, Matusita K, Yamashita T (1989) Preparation and properties of superconducting glass ceramics based on the Bi–Sr–Ca–Cu–O system. J Ceram Soc Jpn 97:251

    Article  CAS  Google Scholar 

  32. Tatsumisago M, Angell CA, Tsuboi S, Akamatsu Y, Tohge N, Minami T (1989) Transition range viscosity of rapidly quenched Bi–Ca–Sr–Cu–O glasses. Appl Phys Lett 54:2268

    Article  CAS  Google Scholar 

  33. Komatsu T, Ohki T, Hirose C, Matusita K (1989) Superconducting properties of glass-ceramics in the Bi–Sr–Ca–Cu–O system. J Non-Cryst Solids 113:274

    Article  CAS  Google Scholar 

  34. Komatsu T, Sato R, Kuken Y, Matusita K (1993) Kinetics of nonisothermal crystallization of Bi2Sr2CaCu2O x glasses with different copper valence states. J Am Ceram Soc 76:2795

    Article  CAS  Google Scholar 

  35. Khaled J, Watanabe R, Sato R, Komatsu T (1997) Implications of Cu valence on the structure of Bi-based superconducting precursor glasses. J Non-Cryst Solids 222:175

    Article  CAS  Google Scholar 

  36. Nilsson A, Gruner W, Acker J, Wetzig K (2008) Critical aspects on preparation of Bi-2223 glassy precursor by melt-process. J Non-Cryst Solids 354:839

    Article  CAS  Google Scholar 

  37. Komatsu T, Sato R, Imai K, Matusita K, Yamashita T (1988) High-T c superconducting glass ceramics based on the Bi–Ca–Sr–Cu–O system. Jpn J Appl Phys 27:L550

    Article  CAS  Google Scholar 

  38. Hinks DG, Soderholm L, Capone DW II, Dabrowski B, Mitchell AW, Shi D (1988) Preparation of Bi–Sr–Ca–Cu–O superconductors from oxide-glass precursors. Appl Phys Lett 53:423

    Article  CAS  Google Scholar 

  39. Komatsu T, Hirose C, Ohki T, Sato R, Matusita K, Yamashita T (1990) Preparation of Ag-coated superconducting Bi2Sr2CaCu2O x glass-ceramic fibers. Appl Phys Lett 57:183

    Article  CAS  Google Scholar 

  40. Komatsu T, Sato R, Meguro H, Matusita K, Yamashita T (1991) Effect of copper content on glass formation and superconductivity in the Bi–Pb–Sr–Ca–Cu–O system. J Mater Sci 26:683

    Article  CAS  Google Scholar 

  41. Komatsu T, Matusita K (1991) High-Tc superconducting glass-ceramics. Thermochim Acta 174:131

    Article  CAS  Google Scholar 

  42. Komatsu T (1993) High-Tc superconducting glass-ceramics and fibers. Mater Sci Forum 130–132:97

    Article  Google Scholar 

  43. Sato R, Komatsu T, Matusita K (1991) Crystallization mechanism in Bi2Sr2CuO x glass. J Non-Cryst Solids 134:270

    Article  CAS  Google Scholar 

  44. Sato R, Kuken Y, Komatsu T, Matusita K (1993) Crystallization behavior in Bi–Sr–Ca–Cu–O glasses. Ceram Trans 30:173

    CAS  Google Scholar 

  45. Ikeda Y, Oue Y, Inaba K, Bando Y, Takano M (1988) Subsolidus phase relation in the BiO1.5–SrO–CaO–CuO system in air. J Jpn Soc Powder Powder Metall 35:405

    Article  CAS  Google Scholar 

  46. Shi D, Tang M, Vandevoort K, Claus H (1989) Formation of the 110-K superconducting phase via the amorphous state in the Bi–Sr–Ca–Cu–O system. Phys Rev B 39:9091

    Article  CAS  Google Scholar 

  47. Shi D, Tang M, Boley MS, Hash M, Vandevoort K, Claus H, Lwin YN (1989) Crystallization of metal-oxide glasses in Bi–Sr–Ca–Cu–O systems. Phys Rev B 40:2247

    Article  CAS  Google Scholar 

  48. Komatsu T, Sato R, Matusita K, Yamashita T (1989) Superconducting glass ceramics with T c = 100 K based on the Bi–Pb–Sr–Ca–Cu–O system. Appl Phys Lett 54:1169

    Article  CAS  Google Scholar 

  49. Sato R, Komatsu T, Matusita K, Yamashita T (1989) Superconducting properties of Bi–Pb–Sr–Ca–Cu–O ceramics prepared by the melt-quenching method. Jpn J Appl Phys 28:L583

    Article  CAS  Google Scholar 

  50. Tatsumisago M, Tsuboi S, Tohge N, Minami T (1990) Temperature-time-transformation diagrams for crystallization process of rapidly quenched Bi–Pb–Ca–Sr–Cu–O glasses. Appl Phys Lett 57:195

    Article  CAS  Google Scholar 

  51. Khaled J, Komatsu T, Matusita K, Sato R (1996) A new model for the formation of high-Tc phase in superconducting (Bi, Pb)2Sr2Ca2Cu3Ox glass-ceramics. J Mater Sci Mater Electron 7:261

    Article  CAS  Google Scholar 

  52. Banzal NP, Doremus RH, Bruce AJ, Moynihan CT (1983) Kinetics of crystallization of ZrF4–BaF2–LaF3 glass by DSC. J Am Ceram Soc 66:233

    Article  Google Scholar 

  53. Matusita K, Komatsu T, Yokota R (1984) Kinetics of non-isothermal crystallization process and activation energy of crystal growth in amorphous materials. J Mater Sci 19:291

    Article  CAS  Google Scholar 

  54. Sato R, Komatsu T, Matusita K (1993) Effect of Cu+ content on properties of Si2Sr2CaCu2O x glass. J Non-Cryst Solids 160:180

    Article  CAS  Google Scholar 

  55. Tatsumisago M, Angell CA, Akamatsu Y, Tsuboi S, Tohge N, Minami T (1989) Crystallization kinetics for quenched Bi–Ca–Sr–Cu–O glasses. Appl Phys Lett 55:600

    Article  CAS  Google Scholar 

  56. De Guire MR, Bansal NP, Kim CJ (1990) Superconducting glass ceramics in the Bi–Sr–Ca–Cu–O system. J Am Ceram Soc 73:1165

    Article  Google Scholar 

  57. Zheng H, Mackenzie JD (1991) Initial crystallization of Bi4Ca3Sr3Cu4O y glasses. Phys Rev B 43:3048

    Article  CAS  Google Scholar 

  58. Fuxi G, Guangming LI (1992) Crystallization kinetics of glasses in BiO1.5–Ca0.5Sr0.5–CuO quasiternary oxide system. In: Pye LD, LaCourse WC, Stevens HJ (eds) Physics of non-crystalline solids. Taylor & Francis, London, pp 406–410

    Google Scholar 

  59. Bansal NP (1990) Superconducting Bi1.5Pb0.5Sr2Ca2Cu3O x ceramics by rapid melt quenching and glass crystallization. J Appl Phys 68:1143

    Article  CAS  Google Scholar 

  60. Urano T, Khaled J, Komatsu T, Chaudhuri BK (1999) Crystallization kinetics of superconducting precursor glasses in the Bi–Pb–Sr–Ca–Cu–O system. Thermochim Acta 325:133

    Article  CAS  Google Scholar 

  61. Ghigna P, Tamburini UA, Spinolo G, Flor G (1993) Kinetics and mechanism of formation of the Bi2Sr2CuO x superconductor. J Phys Chem Solids 54:107

    Article  CAS  Google Scholar 

  62. Gao XH, Jiang SF, Gao D, Zheng GD, Gao S (1995) The kinetics of the formation of the Bi-based superconducting phase. Phys C 244:321

    Article  CAS  Google Scholar 

  63. Wu NL, Chang YC (1992) Reaction mechanism in non-isothermal synthesis of high-T c superconducting oxide YBa2Cu3O7. Thermochim Acta 203:339

    Article  CAS  Google Scholar 

  64. Šesták J, Koga N (1992) Problems of YBa2Cu3O x formation and decomposition kinetics and mechanism. Thermochim Acta 203:321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Komatsu, T., Šesták, J. (2012). Oxide Superconductors as Model Systems for Studying Phase Relations, Stoichiometry, Reaction Kinetics, and Unconventional Glass Formability. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_22

Download citation

Publish with us

Policies and ethics