Skip to main content

Research, Development, Demonstration and Deployment Issues in the Power Sector

  • Chapter
  • First Online:
Global Climate Change - The Technology Challenge

Part of the book series: Advances in Global Change Research ((AGLO,volume 38))

  • 1424 Accesses

Abstract

In this chapter we explore the challenges in developing and deploying technology for mitigation of CO2 emissions associated with power generation. Past successes with controlling other pollutants (notably SO2) provide insight as to the difficulty of extrapolating those successes to applications for carbon capture and control. Technology innovations that have yet to reach commercial fruition are noted, but for the near term we can make effective use of commercial processes readily available and achieve significant reductions in carbon emissions. These reductions can be obtained by fuel switching, efficiency upgrades introduced fleetwide, and expanded use of lower CO2 emitting technologies, all of which should be done in parallel with a robust R&D program to develop new technologies for extraction of CO2 from exhaust gases or strategies for fuel decarbonization.

The findings included in this chapter do not necessarily reflect the view or policies of the Environmental Protection Agency. Mention of trade names or commercial products does not constitute Agency endorsement or recommendation for use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     The 2008 coal ash pond failure at the TVA plant in Kingston, Tennessee injected a new level of complexity in the concern over coal waste disposal.

  2. 2.

     Assuming a gas concentration of SO2 of 1,000 ppm at 10% CO2.

References

  1. McFarland J (2000) et. al. The Economics of CO2 Separation and Capture, Technology 7 (1): 13–23. http://sequestration.mid.edu/pdf/net_lMcFarland.pdf

  2. Biondo SJ, Marten JC (1977) A history of flue gas desulfurization systems since 1850. J Air Pollut Control Assoc 27(10):948–961

    Google Scholar 

  3. Johnson TL, Keith DW (2004) Fossil electricity and CO2 sequestration: how natural gas prices, initial conditions and retrofits determine the cost of controlling CO2 emissions. Energ Policy 32:367–382

    Article  Google Scholar 

  4. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energ Policy 34:4444–4454

    Article  Google Scholar 

  5. Feeley et al (2007) DOE/NETL’s carbon capture R&D program for existing coal-fired power plants, A.P. Presented at PowerGen 2007, Orlando, Dec 2007

    Google Scholar 

  6. Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases: commercial trends. Presented at the Canadian Society of Chemical Engineers annual meeting, Saskatoon, 4–6 Oct 1999

    Google Scholar 

  7. Jared Ciferno, CO2 capture ready coal plants DOE/NETL-2007/1301 final report, Apr 2008

    Google Scholar 

  8. –2017 NERC capacity margins: retrofit of once-through cooling systems at existing generating facilities. Downloaded http://www.nerc.com/files/NERC_SRA-Retrofit_of_Once-Through_Generation_090908.pdf

  9. Nsakala N et al (2001) Engineering feasibility of CO2 capture on an existing US coal-fired power plant. Presentation at the 1st National Conference on carbon sequestration, Washington, 15–17 May 2001. http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/7c1.pdf

  10. James Katzer, The future of coal, An interdiscipilinary MIT Study, Massachusetts Institute of Technology MIT Coal. options for a carbon-constrained world. MIT, p 19, ISBN 978-0-615-14092-6

    Google Scholar 

  11. Beér JM (2007) High efficiency electric power generation: the environmental role. Prog Energ Combust Sci 33:107–134

    Article  Google Scholar 

  12. Tim Heavy, California’s coastal power plants: alternative cooling systems analysis, prepared by Tetra Tech, Inc. Golden, Co Feb 2008. http://www.swrcb.ca.gov/water_issues/programs/npdes/docs/cooling/fullreport.pdf

  13. Gottlicher G (2004) The energetics of carbon dioxide capture in power plants. US Department of Energy, Office of Fossil Energy, NETL, Feb 2004

    Google Scholar 

  14. Dr. Niall McGlasahan Imperial college

    Google Scholar 

  15. Yu YS et al (2009) An innovative process for simultaneous removal of CO2 and SO2 from flue gas of a power plant by energy integration. Energ Convers Manag 50:2885–2892

    Article  Google Scholar 

  16. Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999. doi:10.1021/ja0570032

    Article  Google Scholar 

  17. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128(11):3494–3495. doi:10.1021/ja058213h

    Article  Google Scholar 

  18. Dai P et al (1995) Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8  +  δ by Tl substitution. Phys C Supercond 243(3–4):201–206. doi:10.1016/0921-4534(94)02461-8

    Article  Google Scholar 

  19. Grant PM (2004) The supercable: dual delivery of hydrogen and electric power, power systems conference and exposition. IEEE PES 3(10–13):1745–1749. doi:10.1109/PSCE.2004.1397675

    Google Scholar 

  20. Chen W et al (2008) Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J Am Chem Soc 130(29):9414–9419. doi:10.1021/ja8008192

    Article  Google Scholar 

  21. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047. doi:10.1021/cr050193e

    Article  Google Scholar 

  22. Kung M, Davis RJ, Kung H (2007) Understanding au-catalyzed low-temperature CO oxidation. J Phys Chem C 111(32):11767–11775

    Article  Google Scholar 

  23. Zhitao Xiong Z, Keong Yong C, Wu G, Ping Chen, Shaw W, Abhi Karkamkar, Autrey T, Jones MO, Johnson SR, Edwards Peter P, David W (2008) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7:138–141. doi:10.1038/nmat2081

    Article  Google Scholar 

  24. Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage. J Am Chem Soc 129(7):1844–1845. doi:10.1021/ja066860i

    Article  Google Scholar 

  25. Richter HJ, Knoche KF (1983) Reversibility of combustion processes, in efficiency and costing – second law analysis of processes. ACS Symp Ser 235:71–85

    Article  Google Scholar 

  26. Ishida M, Zheng D, Akehata T (1987) Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Int J Energ 12:147–154

    Article  Google Scholar 

  27. Ishida M, Jin N (1997) CO2 recovery in a power plant with chemical looping combustion. Energ Convers Manag 38:S187–S192

    Article  Google Scholar 

  28. Brandvoll Ø, Bolland O (2004) Inherent CO2 capture using chemical looping combustion in a natural gas fired cycle. Trans ASME 126:316–321

    Article  Google Scholar 

  29. Mattisson T, Zafar Q, Johansson M, Lyngfelt A (2006) Thermal analysis of chemical-looping combustion. Trans I Chem E A Chem Eng Res Des 84:795–806

    Google Scholar 

  30. Mattisson T et al (2007) Chemical-looping combustion using syngas as fuel. Int J Greenhouse Gas Control 1:158–169

    Google Scholar 

  31. McGlashan N, Heyes AL, Marquis AJ (2007) Carbon capture and reduced irreversibility combustion using chemical looping. In: Proceedings of GT2007 ASME Turbo Expo, Montreal, 14–17 May 2007

    Google Scholar 

  32. Xiang W, Chen Y (2007) Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors. Energ Fuels 21(4):2272–2277. doi:10.1021/ef060517h

    Article  Google Scholar 

  33. IHS CERA (2009) Power market fundamentals, client briefing, New York

    Google Scholar 

  34. http://www.powergenworldwide.com/index/videogallery.html

  35. Strauss LL (1954) Speech to the National Association of Science Writers, New York, 16 Sep 1954

    Google Scholar 

  36. http://www.ne.doe.gov/newsroom/2008PRs/nePR042808.html

  37. Zero Emission Project (ZEP) project list, Niederaussem. http://www.zeroemissionsplatform.eu/projects.html/fossil-fuel-power-plants-announced-pilot-demonstration-programmes/9-niederaussem

  38. Chupka MW, Earle R, Fox-Penner P, Hledik R (2008) Transforming America’s power industry: the investment challenge 2010, prepared by the Brattle Group. http://www.edisonfoundation.net/Transforming_Americas_Power_Industry.pdf

  39. Revis James, Richard Reichels, Geoff Blanford, Steve Gehl. The power to reduce CO2 emissions: the full portfolio, EPRI discussion paper, prepared for the EPRI 2007 summer seminar 40. http://mydocs.epri.com/docs/public/DiscussionPaper2007.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Rising .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rising, B. (2011). Research, Development, Demonstration and Deployment Issues in the Power Sector. In: Princiotta, F. (eds) Global Climate Change - The Technology Challenge. Advances in Global Change Research, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3153-2_10

Download citation

Publish with us

Policies and ethics