Skip to main content

A Novel Approach to Modeling Coronary Stents Using a Slender Curved Rod Model: A Comparison Between Fractured Xience-Like and Palmaz-Like Stents

  • Chapter
  • First Online:
Applied and Numerical Partial Differential Equations

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 15))

Summary

We present a novel mathematical model to study the mechanical properties of endovascular stents in their expanded state. The model is based on the theory of slender curved rods. Stent struts are modeled as linearly elastic curved rods that satisfy the kinematic and dynamic contact conditions at the vertices where the struts meet. A weak formulation for the stent problem is defined and a Finite Element Method for a numerical computation of its solution is used to study mechanical properties of two commonly used coronary stents (Palmaz-like and Xience-like stent) in their expanded, fractured state. A simple fracture (separation), corresponding to one stent strut being disconnected from one vertex in a stent, was considered. Our results show a drastic difference in the response of the two stents to the physiologically reasonable uniform compression and bending forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Berry, A. Santamarina, J. E. Moore, Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng., 28(4):386–398, 2000.

    Article  Google Scholar 

  2. S. Canic, C. J. Hartley, D. Rosenstrauch, J. Tambaca, G. Guidoboni, and A. Mikelic. Blood flow in compliant arteries: An effective viscoelastic reduced model, numerics and experimental validation. Ann. Biomed. Eng., 34(4):575–592, 2006.

    Article  Google Scholar 

  3. A. Carter. Stent strut fracture: Seeing is believing. Catheter. Cardiovasc. Interv., 71(5):619–620, 2008.

    Article  Google Scholar 

  4. P. G. Ciarlet. Mathematical Elasticity. Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam, 1988.

    Google Scholar 

  5. C. Dumoulin and B. Cochelin. Mechanical behavior modeling of balloon-expandable stents. J. Biomech., 33(11):1461–1470, 2000.

    Article  Google Scholar 

  6. A. O. Frank, P. W. Walsh, and J. E. Moore, Jr. Computational fluid dynamics and stent design. Artificial Organs, 26(7):614–621, 2002.

    Article  Google Scholar 

  7. Y. C. Fung. Biomechanics: Mechanical properties of living tissues. Springer, second edition, 1993.

    Google Scholar 

  8. G. Hausdorf. Mechanical and biophysical aspects of stents. In P. Syamasundar Rao and Morton J. Kern, editors, Catheter Based Devices for the Treatment of Non-coronary Cardiovascular Diseases in Adults and Children, Philadelphia, PA, 2003. Lippincott Williams & Wilkins.

    Google Scholar 

  9. V. Hoang. Stent design and engineered coating over flow removal tool. Team #3 (Vimage), 10/29/04.

    Google Scholar 

  10. M. Jurak and J. Tambača. Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci., 9(7):991–1014, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Jurak and J. Tambača. Linear curved rod model. General curve. Math. Models Methods Appl. Sci., 11(7):1237–1252, 2001.

    Google Scholar 

  12. K. W. Lau, A. Johan, U. Sigwart, and J. S. Hung. A stent is not just a stent: stent construction and design do matter in its clinical performance. Singapore Med. J., 45(7):305–311, 2004.

    Google Scholar 

  13. A. N. Makaryus, L. Lefkowitz, and A. D. K. Lee. Coronary artery stent fracture. Int. J. Cardiovasc. Imaging, 23:305–309, 2007.

    Article  Google Scholar 

  14. D. R. McClean and N. L. Eiger. Stent design: Implications for restenosis. Rev. Cardiovasc. Med., 3(5):S16–22, 2002.

    Google Scholar 

  15. F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech., 35(6):803–811, 2002.

    Article  Google Scholar 

  16. J. E. Moore Jr. and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng., 30(4):498–508, 2002.

    Article  Google Scholar 

  17. A. C. Morton, D. Crossman, and J. Gunn. The influence of physical stent parameters upon restenosis. Pathologie Biologie, 52:196–205, 2004.

    Article  Google Scholar 

  18. F. Shaikh, R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, and T. Bajwa. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis. Catheter. Cardiovasc. Interv., 71(5):614–618, 2008.

    Article  Google Scholar 

  19. J. Tambača. A model of irregular curved rods. In Z. Drmač, V. Hari, L. Sopta, Z. Tutek, and K. Veselić, editors, Proceedings of the Conference on Applied Mathematics and Scientific Computing (Dubrovnik, 2001), pages 289–299. Kluwer, 2003.

    Google Scholar 

  20. J. Tambača. A numerical method for solving the curved rod model. ZAMM Z. Angew. Math. Mech., 86(3):210–221, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Tambača, M. Kosor, S. Čanić, and D. Paniagua. Mathematical modeling of vascular stents. SIAM J. Appl. Math.Under revision.

    Google Scholar 

  22. L. H. Timmins, M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore, Jr. Stented artery biomechanics and device design optimization. Med. Bio. Eng. Comput., 45(5):505–513, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Tambača .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tambača, J., Čanić, S., Paniagua, D. (2010). A Novel Approach to Modeling Coronary Stents Using a Slender Curved Rod Model: A Comparison Between Fractured Xience-Like and Palmaz-Like Stents. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Périaux, J., Pironneau, O. (eds) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3239-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3239-3_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3238-6

  • Online ISBN: 978-90-481-3239-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics