Skip to main content

Wnt Signaling in Pancreatic Islets

  • Chapter
  • First Online:
The Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 654))

Abstract

The Wnt signaling pathway is critically important not only for stem cell amplification, differentiation, and migration, but also is important for organogenesis and the development of the body plan. Beta-catenin/TCF7L2-dependent Wnt signaling (the canonical pathway) is involved in pancreas development, islet function, and insulin production and secretion. The glucoincretin hormone glucagon-like peptide-1 and the chemokine stromal cell-derived factor-1 modulate canonical Wnt signaling in β-cells which is obligatory for their mitogenic and cytoprotective actions. Genome-wide association studies have uncovered 19 gene loci that confer susceptibility for the development of type 2 diabetes. At least 14 of these diabetes risk alleles encode proteins that are implicated in islet growth and functioning. Seven of them are either components of, or known target genes for, Wnt signaling. The transcription factor TCF7L2 is particularly strongly associated with risk for diabetes and appears to be fundamentally important in both canonical Wnt signaling and β-cell functioning. Experimental loss of TCF7L2 function in islets and polymorphisms in TCF7L2 alleles in humans impair glucose-stimulated insulin secretion, suggesting that perturbations in the Wnt signaling pathway may contribute substantially to the susceptibility for, and pathogenesis of, type 2 diabetes. This review focuses on considerations of the hormonal regulation of Wnt signaling in islets and implications for mutations in components of the Wnt signaling pathway as a source for risk-associated alleles for type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes Association web site http://www.diabetes.org/about-diabetes.jsp

  2. Juvenile Diabetes Research Foundation web site. http://www.jdrf.org/index.cfm?fuseaction=home.viewPage&page_id=71927021-99EA-4D04-92E8463E607C84E1

  3. Meetoo D, McGovern P, Safdi R, An epidemiological overview of diabetes across the world. Br J Nursing 2007;16:1002–7.

    Google Scholar 

  4. Jin W, Patti ME, Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin Sci 2009;116:99–111.

    PubMed  CAS  Google Scholar 

  5. Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab 2000;11:375–8.

    PubMed  CAS  Google Scholar 

  6. Bonner-Weir S, Weir GC. New sources of pancreatic beta cells. Nat Biotechnol 2005;23:857–61.

    PubMed  CAS  Google Scholar 

  7. Bonner-Weir S, Sharma A. Are their pancreatic progenitor cells from which new islets form after birth? Nat Clin Pract Endocrinol Metab 2006;2:240–1.

    PubMed  Google Scholar 

  8. Jensen JM, Cameron E, Baray MV, Starkev TW, Gianani R, Jensen J. Recapitulation of elements on embryonic development in adult mouse pancreatic regeneration. Gastroenterology 2005;128:728–41.

    PubMed  CAS  Google Scholar 

  9. Pauls F, Bancroft RW. Production of diabetes in the mouse by partial pancreatectomy. Am J Physiol 1950;160:103–6.

    PubMed  CAS  Google Scholar 

  10. Cheta D. Animal models of type 1 (insulin-dependent) diabetes mellitus. J Pediart Endocrinol Metab 1998;11:11–9.

    CAS  Google Scholar 

  11. Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med 2005;22:359–70.

    PubMed  CAS  Google Scholar 

  12. Sakaguchi Y, Inaba M, Kusafuka K, Okazaki K, Ikehara S. Establishment of animal models for three types of pancreatic and analyses of regeneration mechanisms. Pancreas 2006;33:371–81.

    PubMed  Google Scholar 

  13. Dor Y, Brown J, Martinez OI, Melton DA. dult pancreatic beta cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429:41–6.

    PubMed  CAS  Google Scholar 

  14. Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H.. eta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008;132:197–207.

    PubMed  CAS  Google Scholar 

  15. Lyssenko V. Jonsson A, Almgren P, pulizzi N, Isomaa B, Tusomi T, Gerglund G, Altshuler D, Nisson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008;359:2220–32.

    PubMed  CAS  Google Scholar 

  16. Florez J. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab 2008;93:4633–42.

    PubMed  CAS  Google Scholar 

  17. Zeggini et al.. eta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008;40:638–45.

    PubMed  CAS  Google Scholar 

  18. Van Hoek M, Dehghan A, Witteman JC, Van Dulin CM, Utterfinden AG, Oostra BA, Hofman A, Sijbrands BA, Janssens AC. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study Diabetes 57: 2008; 3122–28.

    PubMed  Google Scholar 

  19. Grarup N, Andersen G, Krarup NT, Albrechtsen A, Schmitz O, Jergensen T, Borch-Johnsen K, Pedersen O. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 2008;57:2534–540.

    PubMed  CAS  Google Scholar 

  20. Florez J (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetogia 2008; 51:1100–10.

    Google Scholar 

  21. Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P. Islet specfic Wnt activation in human type 2 diabetes. Exp Diabetes Res 2008:728–63.

    Google Scholar 

  22. Welters HJ, Kulkarni RN. Wnt signaling: relevance to beta cell biology and diabetes. Trends Endocrinol Metab 2008;19:349–55.

    PubMed  CAS  Google Scholar 

  23. Murtaugh LC. he what, where, when and how of Wnt/beta–catenin signaling in pancreas development. Organogenesis 2008;4:81–6.

    PubMed  Google Scholar 

  24. Jin T. The WNT signalling pathway and diabetes mellitus. Diabetologia 2008;51:1771–80.

    PubMed  CAS  Google Scholar 

  25. Lyssenko V . The transcription factor 7-like 2 gene and increased risk of type 2 diabetes: an update. Curr Opin Clin Nutr Metab Care 2008;11:385–92.

    PubMed  CAS  Google Scholar 

  26. Jin T, Liu L. he Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol 2008;22:2383–92.

    PubMed  CAS  Google Scholar 

  27. Perry JR, Frayling TM. New gene variants alter type 2 diabetes risk predominantly through reduced beta cell function. Curr Opin Clin Nutr Metab Care 2008;11:371–7.

    PubMed  CAS  Google Scholar 

  28. Cauchi S, Froguel P. TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep 2008;8:149–55. Review.

    PubMed  CAS  Google Scholar 

  29. Jin T. Mechanisms underlying proglucagon gene expression. J Endocrinol 2008;198:17–28.

    PubMed  CAS  Google Scholar 

  30. Hattersley AT. Prime suspect: the TCF7L2 gene and type 2 diabetes risk. J Clin Invest 2007;117:2077–9.

    PubMed  CAS  Google Scholar 

  31. Weedon MN. The importance of TCF7L2. Diabet Med 2007;24:1062–6.

    PubMed  CAS  Google Scholar 

  32. Grarup N, Andersen G. Gene-environment interactions in the pathogenesis of type 2 diabetes and metabolism. Curr Opin Clin Nutr Metab Care 2007;10:420–6.

    PubMed  CAS  Google Scholar 

  33. Florez JC. The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care 2007;10:391–6.

    PubMed  CAS  Google Scholar 

  34. Frayling TM. A new era in finding Type 2 diabetes genes-the unusual suspects. Diabet Med 2007;24:696–701.

    PubMed  CAS  Google Scholar 

  35. Owen KR, McCarthy MI. Genetics of type 2 diabetes. Curr Opin Genet Dev 2007;17: 239–44.

    PubMed  CAS  Google Scholar 

  36. Smith U. TCF7L2 and diabetes—what we Wnt to know. Diabetologia 2007;50:5–7.

    PubMed  CAS  Google Scholar 

  37. Kikuchi A, Kishido S, Yamamoto H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 2006;38:1–10.

    PubMed  CAS  Google Scholar 

  38. Willert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev 2006;20: 1394–1404.

    PubMed  CAS  Google Scholar 

  39. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004;5:691–701.

    PubMed  CAS  Google Scholar 

  40. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483–7.

    PubMed  CAS  Google Scholar 

  41. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781–810.

    PubMed  CAS  Google Scholar 

  42. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006;281:22429–33.

    PubMed  CAS  Google Scholar 

  43. Nusse. Wnt signaling and stem cell control. Cell Research 2008;18:523–7.

    PubMed  CAS  Google Scholar 

  44. MacDonald BT, Semenov MV, He X. SnapShot: Wnt/beta-catenin signaling. Cell 2007;131:1204.

    PubMed  CAS  Google Scholar 

  45. Semenov MV, Habas R, Macdonalt BT, He. X SnapShot: Noncanonical Wnt signaling pathways. Cell. 2007;131:1738.

    Google Scholar 

  46. Liu Z, Habener JF. Glucagon–like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008;283:8723–35.

    PubMed  CAS  Google Scholar 

  47. Shu L. Sauter NS, Schulthess FT, Matvevenko AV, Oberholzer J, Maedler K. Transcription factor 7-like 2 regulates beta cell survival and function in human pancreatic islets. Diabetes 2008;57:645–53.

    PubMed  CAS  Google Scholar 

  48. Schafer SA, Tschritter O, Machicao F, Thamer C, Stefan N, Gallwitz B, Holst JJ, Dekker JM, ‘t Hart LM, Nipeis G, van Haeften TW, Haring HU, Fritsche A. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 2007;59:2443–50.

    Google Scholar 

  49. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008;4:68–7.

    PubMed  Google Scholar 

  50. Wada H, Okamoto H. Roles of planar cell polarity pathway genes for neural migration and differentiation. Dev Growth Differ 2009;Feb 26 ahead of print.

    Google Scholar 

  51. Veeman MT, Axelrod JD, Moon, RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003;5:367–77.

    PubMed  CAS  Google Scholar 

  52. Heller RS, Dichmann DS, Jensen J, Miller C, Wong G, Madsen OD, Serup P. Expression patterns of Wnts, Frizzleds, sFRPs and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn 2002;225:260–70.

    PubMed  CAS  Google Scholar 

  53. Heller RS, Klein T, Ling Z, Heimberg H, Katoh M, Madsen OD, Serup. Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr 2003;11:141–7.

    PubMed  CAS  Google Scholar 

  54. Pedersen AH, Heller RS. A possible role for the canonical Wnt pathway in endocrine cell development in chicks. Biochem Biophys Res Comm 2005;333:961–8.

    PubMed  CAS  Google Scholar 

  55. Kim HJ, Schieffarth JB, Jessurun J, Sumanas S. Petryk A, Lin S, Ekker SC. Wnt5 signaling in vertebrate pancreas development. BMC Biol 2005;24:3–23.

    Google Scholar 

  56. Wang OM, Zhang Y, Yang KM, Zhou HY, Yano HJ. Wnt/beta-catenin signaling pathway is active in pancreatic development of rat embryo. World J Gastroenterol 2006;12:2615–9.

    PubMed  CAS  Google Scholar 

  57. Dessimoz J, Bonnard C, Huelsken J, Grapin-Botton A. Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 2005;15:1677–83.

    PubMed  CAS  Google Scholar 

  58. Papadopoulou S, Edlund H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes 2005;54:2844–51.

    PubMed  CAS  Google Scholar 

  59. Schinner S, Ulgen F, Papewalis C, Schott M, Woelk A, Vidal-Puig A, Scherbaurm WA. Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adiopocyte-derived Wnt signalling molecules. Diabetologia 2008;51:147–54.

    PubMed  CAS  Google Scholar 

  60. Murtaugh LC Law AC, Dor Y, Melton DA. Beta-catenin is essential for pancreatic acinar but not islet development. Development 2005;132:4663–74.

    PubMed  CAS  Google Scholar 

  61. Wells JM, Esni F, Bolvin GP, Aronow BJ, Stuart W, Combs C, Sklenka A, Leach SD, Lowy AM. Wnt/beta-catenin signaling is required for development of the exocrine pancreas. BMC Dev Biol 2007;7:4.

    PubMed  Google Scholar 

  62. Heiser PW, Lalu J, Taketo MM, Herrera PL, Hebrok M. Stabilization of beta-catenin impacts pancreatic growth Development 2006;133:2023–33.

    CAS  Google Scholar 

  63. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007;134:2207–17.

    PubMed  CAS  Google Scholar 

  64. Rulifson JC, Karnik SK, Heiser PW ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK. Wnt signaling regulates pancreatic beta cell proliferation Proc Natl Acad Sci USA 2007;104:6247–52.

    PubMed  CAS  Google Scholar 

  65. Fujino T, et al. ow-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci USA 2003;100:229–34.

    PubMed  CAS  Google Scholar 

  66. Loder MK, da Silva XG, McDonald A, Rutter GA. TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic beta cells Biochem Soc Trans 2008;36:357–9.

    PubMed  CAS  Google Scholar 

  67. da Silva XG, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S, Rutter GA. TCF7L2 regulates late events in insulin secretion from pancratic islet {beeta} cells Diabetes 2009;Jan 23 ahead of print.

    Google Scholar 

  68. Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology. (2008) 2008;149:2341–51.

    CAS  Google Scholar 

  69. Nusse. Wnt signaling and stem cell control. Cell Research 2008;18:523–7.

    PubMed  CAS  Google Scholar 

  70. Liu Z, Habener JF. Stromal cell-derived factor-1 promotes survival of pancratic beta cells by the stabilization of beta-catenin and activation of TCF7L2. Diabetologia 2009; 52:1589–15.

    Google Scholar 

  71. Kieffer TJ, Habener JF (1999) The glucagon-like peptides. Endocr Revs 2009;20:876–913.

    Google Scholar 

  72. Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.

    PubMed  CAS  Google Scholar 

  73. Burger JA, Kipps TJ. CXCR4 a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006;107:1761–67.

    PubMed  CAS  Google Scholar 

  74. Kucia M, Ratajczak J, Ratajczak MZ. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 2005;97:133–46.

    PubMed  CAS  Google Scholar 

  75. Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006;20:1915–24.

    PubMed  CAS  Google Scholar 

  76. Kryczek I, Wei S, Keller E, Liu R, Zou W. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol. 2007;292:C987–95.

    PubMed  CAS  Google Scholar 

  77. Kayali AG, Van Gunst K, Campbell IL, Stotland A, Kritzik M, Liu G, Flodstrom-Tullberg M, Zhang YQ, Sarvetnick N. The stromal cell-derived factor-1alpha/CXCR4 ligand-receptor axis is critical for progenitor survival and migration in the pancreas. J Cell Biol 2003;163:859–69.

    PubMed  CAS  Google Scholar 

  78. Luo Y, Cai J, Xue H, Mattson MP, Rao MS. SDF-1alpha/CXCR4 signaling stimulates beta-catenin transcriptional activity in rat neural progenitors. Neurosci Lett 2006;398:291–5.

    PubMed  CAS  Google Scholar 

  79. Yano T, Liu Z, Donovan J, Thomas MK, Habener JF. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta cell survival by activation of the prosurvival kinase Akt. 2007 Diabetes 2007;56:2946–57.

    CAS  Google Scholar 

  80. Zeggini et al. eplication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007;316:1336–41.

    PubMed  CAS  Google Scholar 

  81. Saxena R, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007;316:1332–6

    Google Scholar 

  82. Sladek R, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007;445:881–5.

    PubMed  CAS  Google Scholar 

  83. Scott LJ, et al. A genome-wide association stuidy of type 2 diabetes in France detects multiple susceptibility variants. Science 2007;316:1341–5.

    PubMed  CAS  Google Scholar 

  84. Grarup N, et al. Studies of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 2007;56:3105–11.

    PubMed  CAS  Google Scholar 

  85. Hayes MG, et al. Identification of type 2 diabetes genes in Mexican Americans through genome-wide association studies. Diabetes 2007;56:3033–44.

    PubMed  CAS  Google Scholar 

  86. Cauchi S, et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PloS One 2008;3:e2031.

    PubMed  Google Scholar 

  87. Buchat SM, et al. Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identifiend in genome-wide association studies. Acta Diabetol 2008;Dec 10 ahead of print.

    Google Scholar 

  88. Owen KR, McCarthy MI. Genetics of type 2 diabetes. Curr Opin Genet Develop 2007;17:239–44.

    CAS  Google Scholar 

  89. Moore AF, et al. Extension of type 2 diabetes genome-wide associaiton scan esuls in the diabetes prevention program. Diabetes 2008;57:2503–10.

    PubMed  CAS  Google Scholar 

  90. Steinthorsdottir V, et al. CDKAL1 influences insulin response and risk of type 2 diabetes Nature Genet 2007.

    Google Scholar 

  91. Palmer ND, et al. auantitiative trait anslysis of type 2 diabetes sucepetibility loci identified from whole genome association studies in the insulin resistance atherosclerosis family study Diabetes 2008;57:1093–1100.

    PubMed  CAS  Google Scholar 

  92. Grant SF, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genet 2006;38:320–3.

    PubMed  CAS  Google Scholar 

  93. Gloyn AL, Braun M, Rorsman P. Type 2 diabetes susceptibility gene TCF7L2 and its role in beta cell function. Diabetes 2009;58:832–4.

    Google Scholar 

  94. Korinek Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H., Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H., Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998 Aug;19(4): 379–83.

    Google Scholar 

  95. Barker, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003–7.

    PubMed  CAS  Google Scholar 

  96. Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase 3 beta. J Biol Chem 2005;280:1457–64.

    PubMed  CAS  Google Scholar 

  97. Jia G, Yano CG, Yang S, Jian X, Yi C, Zhou ZA, He C. Oxidative demethylation of 3-methylthymidine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 2008;582:3313–9.

    PubMed  CAS  Google Scholar 

  98. Frederiksson R Hagglund M, Olszewski PK, Sstephansson O, Jacobsson JA, Olszewska AM, Levine AS, Lindblom J, Schioth HB. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 2008;149:2062–71.

    Google Scholar 

  99. Do R, Bailey SD, Desbiens K, Belisle A, Montpetite, Bouchard C, Perusse L, Vohl MC, Engert JC. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Diabetes 2008;57:1147–50.

    CAS  Google Scholar 

  100. Anselme I, Lacief C, Lanaud M, Ruther U, Schneider-Maunoury S. Defects in brain patterning and head morphogenesis in the mouse mutant Fused toes, Dev Biol 2007;304:208–20.

    PubMed  CAS  Google Scholar 

  101. Peters T, Ausmeier K, Dildrop R, Ruther U. The mouse Fused toes (Ft) mutation is the result of a 1.6 Mb deletion including the entire Iroquois B gene locus. Mamm Genome 2002;13:186–8.

    PubMed  CAS  Google Scholar 

  102. Braun MM, Etheridge A, Bernard A, Robertson CP, Roelink H. Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain. Development 2003;130:5579–87.

    PubMed  CAS  Google Scholar 

  103. Petri A, Anfelt-Ronne J, Fredericksen RS, Edwards DG, Madsen D, Serup P, Fleckner J, Heller RS. The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J Mol Endocrinol 2006;37:301–16.

    PubMed  CAS  Google Scholar 

  104. Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM. Notch2-positive progenitors with the intrinsic ability to give rise to pancreatic duct cells. Lab Invest 2005;85:1003–12.

    PubMed  CAS  Google Scholar 

  105. Nakhai, et al. Conditional ablation of Notch signaling in pancreatic development. Development 2008;135:2757–65.

    PubMed  CAS  Google Scholar 

  106. Espinosa L, Engles-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase 3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem 2003;278:32227–35.

    PubMed  CAS  Google Scholar 

  107. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC, Olsen J et al. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol. Cell Biol. 1999;19:1262.

    PubMed  CAS  Google Scholar 

  108. Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, McDougald OA. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors J Biol Chem 2002;277:38239–44.

    PubMed  CAS  Google Scholar 

  109. Bort R, Signore M, Tremblay K, Martinez-Barbera JP, Zaret KS. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development Dev Biol 2006;290:44–56.

    PubMed  CAS  Google Scholar 

  110. Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 2004; 131:797–806.

    PubMed  CAS  Google Scholar 

  111. Hallaq H, et al. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development 2004;131:5197–209.

    PubMed  CAS  Google Scholar 

  112. Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, Weedon MN, Mari A, Hattersley AT, McCarthy MI, Frayling TM, Walker M. RISC Consortium; U.K. Type 2 Diabetes Genetics Consortium. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta cell function. Diabetes. 2007;56:3101–4.

    PubMed  CAS  Google Scholar 

  113. Foley AC, Mercola M, Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 2005;19:387–96.

    PubMed  CAS  Google Scholar 

  114. Zamparnini AL, Watts T, Gardner CE, Tomlinson SR, Johnston GI, Brickman JM. Hex acts with beta-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal. Development 2006;133:3709–22.

    Google Scholar 

  115. Maestro MA, Cardaida C, Boj SF, Luco RF, Servitja JM, Ferrer J. Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta cell function, and growth. Endocr Rev 2007;12:33–45.

    CAS  Google Scholar 

  116. Haldorsen IS, Vesterhus M, Raeder H, Jensen DK, Sovik O, Molven A, Njelstad PR. Lack of pancreatic body and tail in HNF1B mutation carriers. Diabet Med 2008;25:782–7.

    PubMed  CAS  Google Scholar 

  117. Haumaitre C, Fabre M, Cormier S, Baumann C, Delezoide AL, Ceereghini S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum Mol Genet 2006;15:2363–75.

    PubMed  CAS  Google Scholar 

  118. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 1999;22:44–52.

    PubMed  CAS  Google Scholar 

  119. Mettus RV, Rane SG. Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 2003;22:8413.

    PubMed  CAS  Google Scholar 

  120. Marzo N Mora C, Fabregat ME, Martín J, Usac EF, Franco C, Barbacid M, Gomis R. Pancreatic islets from cyclin-dependent kinase 4/R24C (Cdk4) knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in Type 1 diabetes. Diabetologia 2004;47:686.

    Google Scholar 

  121. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006;443:453–7.

    PubMed  CAS  Google Scholar 

  122. Moritani M Yamasaki S, Kagami M, Suzuki T, Yamaoka T, Sano T, Hata J, Itakura M. Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1. Mol Cell Endocrinol. 2005;229:175–84.

    PubMed  CAS  Google Scholar 

  123. Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, Denat L, Goodall J, Luciani F, Viros A, Demirkan N, Bastian BC, Goding CR, Larue L.. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 2007;21:2923–35.

    PubMed  CAS  Google Scholar 

  124. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008;77:289–12.

    PubMed  CAS  Google Scholar 

  125. Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL. In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor gamma response element in the mouse pdx-1 promoter. J Biol Chem 2008;283:32462–70.

    PubMed  CAS  Google Scholar 

  126. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 1999;99:335–45.

    PubMed  CAS  Google Scholar 

  127. Ashcroft FM. The Walter B. Cannon Physiology in Perspective Lecture, 2007 ATP-sensitive K+ channels and disease: from molecule to malady. Am J Physiol Endocrinol Metab. 2007;293:E880–9.

    PubMed  CAS  Google Scholar 

  128. Flechtner I, de Lonlay P, Polak M. Diabetes and hypoglycaemia in young children and mutations in the Kir6.2 subunit of the potassium channel: therapeutic consequences. Diabetes Metab 2006;32:569–80.

    PubMed  CAS  Google Scholar 

  129. Takeda K, Inoue H, Tanizawa Y, et al. WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet 2001;10:477–84.

    PubMed  CAS  Google Scholar 

  130. Ishihara H, Takeda S, Tamura A, et al. Disruption of the WFS1 gene in mice causes progressive beta cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum Mol Genet 2004;13:1159–70.

    PubMed  CAS  Google Scholar 

  131. Riggs AC, Bernal-Mizrachi E, Ohsugi M, et al. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 2005;48:2313–321.

    PubMed  CAS  Google Scholar 

  132. Yamada T, Ishihara H, Tamura A, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta cells. Hum Mol Genet 2006;15:1600–9.

    PubMed  CAS  Google Scholar 

  133. Fonseca SG, Fukuma M, Lipson KL, et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta cells. J Biol Chem 2005;280:39609–15.

    PubMed  CAS  Google Scholar 

  134. Ching YP, Pang AS, Lam WH, Qi RZ, Wang, JH. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor J. Biol. Chem 2002;277:15237–40.

    CAS  Google Scholar 

  135. Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem 2006;28:28858–64.

    Google Scholar 

  136. Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a betacell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004;53:2330–7.

    PubMed  CAS  Google Scholar 

  137. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006;119:4199.

    PubMed  CAS  Google Scholar 

  138. Dunn MF, Zinc-ligand interactions modulate assembly and stability of the insulin hexamer – a review. Biometals 2005;18:295.

    PubMed  CAS  Google Scholar 

  139. Chimienti, F, Devergnas S, Favier A, Seve, M. Identification and cloning of a betacell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004;53:2330–7.

    PubMed  CAS  Google Scholar 

  140. McCarthy MI. Casting a wider net for diabetes susceptibility genes Nat Genet 2008;40:1039–40.

    PubMed  CAS  Google Scholar 

  141. Ullrich S, Su J, Ranta F, Wittekindt OH, Ris F, Rösler M, Gerlach U, Heitzmann D, Warth R, Lang F. Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch 2005;451:428–36.

    PubMed  CAS  Google Scholar 

  142. Bouatia-Naji N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009;41:89–94.

    PubMed  CAS  Google Scholar 

  143. Lyssenko V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 2009;41:82–8.

    PubMed  CAS  Google Scholar 

  144. Barker, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003–7.

    PubMed  CAS  Google Scholar 

  145. Nakajima T, Fujino S, Nakanishie G, Kim YS, Jeettsen AM. TIP27: a novel repressor of the nuclear orphan receptor TAK1/TR4. Nucleic Acids Res 2004;32:4194–204.

    PubMed  CAS  Google Scholar 

  146. Li H, Ma X, Wang J, Koontz J, Nucci M, Sklar J. Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival. Proc Natl Acad Sci USA (2007) 104:20001–6.

    PubMed  CAS  Google Scholar 

  147. Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 2008;321:1357–61.

    PubMed  CAS  Google Scholar 

  148. Hook SS, Means AR. Ca(2+).CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Tocicol 2001;41:472–505.

    Google Scholar 

  149. Yamada T, Suzukii M, Satoh H, Kihara-Negishi F, Nakano H. Oikawa T. Effects of PU.1-induced mouse calcium-calmodulin-dependent kinase 1-like kinase (CKLIK) on apoptosis of murine erythroleukemia cells. Exp Cell Res 2004;294:39–50.

    PubMed  CAS  Google Scholar 

  150. Bieganowski P, Shilnski K, Tsichlis P, Brenner C. Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling elF2gamma abundance. J Biol Chem 2004;279:44656–66.

    PubMed  CAS  Google Scholar 

  151. Rippe V, Drieschner N, Melboom M, Murua Escobar H, Bonk U, Belge G, Bullerdiek J. Identification of a gene rearranged by 2p21 abberations in thyroid adenomas. Oncogene 2003;22:6111–4.

    PubMed  CAS  Google Scholar 

  152. Drieschner N, Belge G, Rippe V, Melboom M, Loeschke S, Bullerdiek J. Evidence for a 3p25 breakpoint hot spot region in thyroid tumors of follicular origin. Thyroid 2006;16:1091–6.

    PubMed  CAS  Google Scholar 

  153. URL:http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=56999&log$=databasead&logdbfrom=protein

  154. Jungers KA, Le Goff C, Sommerville RP, Apte SS. Adamts9 is widely expressed during mouse embryo development. Gene Expr Patterns 2005;5:609–17.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael Rukstalis and Melissa Thomas for helpful comments on this review chapter and Sriya Avadhani, Violeta Stanojevic, and Karen McManus for their expert experimental assistance. Effort was supported in part by grants from the US Public Health Service and from the Juvenile Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel F. Habener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Liu, Z., Habener, J.F. (2010). Wnt Signaling in Pancreatic Islets. In: Islam, M. (eds) The Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 654. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3271-3_17

Download citation

Publish with us

Policies and ethics