Skip to main content

Towards Integrated Nanoelectronic and Photonic Devices

  • Chapter
  • First Online:
New Trends in Nanotechnology and Fractional Calculus Applications

Abstract

State of the art nanotechnology appears like a confusing patchwork of rather diverse approaches to manipulate matter at the nanometer scale. However, there are strong economic and technological driving forces behind those developments. One key technology consists of a rather dramatic shrinking of integrated electronic devices towards the very size limits of nanotechnology, just to satisfy the growing demand for commonly available computing power. Furthermore, the corresponding step from microelectronics to nanoelectronics pushes another important technological sector, which aims at the development of novel optical devices, that ought to furnish the bandwidth and speed to ship the plethora of accumulating processing bits. In the following, we point out some of the basic technological challenges involved, and present a selection of experimental and numerical approaches that aim at the development of novel types of optoelectronic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alduino, A., Paniccia, M.: Wiring electronics with light. Nature Photonics 1, 153 (2007)

    Google Scholar 

  2. Avouris, P.: Carbon nanotube electronics and photonics. Physics Today 62, 34 (2009)

    Article  Google Scholar 

  3. Barnes, W., Dereux, A., Ebbesen, T.: Surface plasmon subwavelength optics. Nature 424, 824 (2003)

    Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics, 6th Ed. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Boustani, I.: Systematic ab initio investigation of bare boron clusters: Determination of the geometry and the electronic structure of b n (n=2-14). Phys. Rev. B 55, 16,426 (1997)

    Google Scholar 

  6. Boustani, I., Quandt, A., Hernandez, E., Rubio, A.: New boron based nanostructured materials. J. Chem. Phys. 110, 3176 (1999)

    Article  Google Scholar 

  7. Chiasera, A., Belli, R., Bhaktha, S., Chiappini, A., Ferrari, M., Jestin, Y., Moser, E., Righini, G., Tosello, C.: High quality factor er3 + -activated dielectric microcavity fabricated by rf sputtering. Appl. Phys. Lett. 89, 171,910–1 (2006)

    Google Scholar 

  8. Chutinan, A., John, S.: Light localization for broadband integrated optics in three dimensions. Phys. Rev. B 72, 161,316–1 (2005)

    Google Scholar 

  9. Ciuparu, D., Klie, R.F., Zhu, Y., Pfefferle, L.: Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967 (2004)

    Article  Google Scholar 

  10. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)

    Google Scholar 

  11. Drexler, K.: Engines of Creation: The Coming Era of Nanotechnology (Reprint). Anchor Books, New York (1987)

    Google Scholar 

  12. Geim, A.K., Kim, P.: Carbon wonderland. Sci. Am. 298, 68 (2008)

    Google Scholar 

  13. Hernandez, E., Ordejon, P., Boustani, I., Rubio, A., Alonso, J.A.: Tight binding molecular dynamics studies of boron assisted nanotube growth. J. Chem. Phys. 113, 3814 (2000)

    Article  Google Scholar 

  14. Hey, A.: Feynman and Computation. Perseus Books, Cambridge (1999)

    MATH  Google Scholar 

  15. Ieong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M.: Silicon device scaling to the sub-10-nm regime. Science 306, 2057 (2004)

    Article  Google Scholar 

  16. Ito, T., Okazaki, S.: Pushing the limits of lithography. Nature 406, 1027 (2000)

    Article  Google Scholar 

  17. Jinno, M., Miyamoto, Y., Hibino, Y.: Optical-transport networks in 2015. Nature Photonics 1, 157 (2007)

    Article  Google Scholar 

  18. Joannopoulos, J., Johnson, S., Winn, J., Meade, R.: Photonic Crystals, 2nd Ed. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  19. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  20. Kunstmann, J., Quandt, A.: Nanotubular boron-carbon heterojunctions. J. Chem. Phys. 121, 10,680 (2004)

    Google Scholar 

  21. Kunstmann, J., Quandt, A.: Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic and mechanical properties. Phys. Rev. B 47, 035,413 (2006)

    Google Scholar 

  22. Kunstmann, J., Quandt, A., Boustani, I.: An approach to control the radius and the chirality of nanotubes. Nanotechnology 18, 155,703 (2007)

    Google Scholar 

  23. Lundstrom, M.: Moore’s law forever? Science 299, 210 (2003)

    Article  Google Scholar 

  24. Maier, S., Atwater, H.: Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011,101 (2005)

    Google Scholar 

  25. Mead, C.: Scaling of mos technology to submicrometer feature sizes. J. VLSI Sig. Proc. 8, 9 (1994)

    Article  Google Scholar 

  26. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley, Reading (1980)

    Google Scholar 

  27. Meindl, J., Chen, Q., Davis, J.: Limits on silicon nanoelectronics for terascale integration. Science 293, 2044 (2001)

    Article  Google Scholar 

  28. Miller, D.: Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE 88, 728 (2000)

    Article  Google Scholar 

  29. Miyai, E., Sakai, K., Okano, T., Kunishi, W., Ohnishi, D., Noda, S.: Photonics: Lasers producting taylored beams. Nature 441, 946 (2006)

    Google Scholar 

  30. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge states in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17,954 (1996)

    Google Scholar 

  31. Novoselov, K., Geim, A.K., Mozorov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  32. Ozbay, E.: Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189 (2006)

    Article  Google Scholar 

  33. Pauling, L.: Nature of the Chemical Bond. Cornell University Press, Ithaca (1960)

    Google Scholar 

  34. Payne, M., Teter, M., Allan, D., Arias, T., Joannopoulos, J.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  35. Peercy, P.: The drive to miniaturization. Nature 406, 1023 (2000)

    Article  Google Scholar 

  36. Quandt, A., Boustani, I.: Boron nanotubes. ChemPhysChem 6, 2001 (2005)

    Google Scholar 

  37. Quandt, A., Ferrari, M.: Low dimensional composite nanomaterials: Theory and applications. Adv. Sci. and Tech. 55, 74 (2008)

    Article  Google Scholar 

  38. Quandt, A., Özdoğan, C., Kunstmann, J., Fehske, H.: Functionalizing graphene by embedded boron clusters. Nanotechnology 19, 335,707 (2008)

    Google Scholar 

  39. Saleh, B., Teich, M.: Fundamentals of Photonics, 2nd Ed. Wiley-Interscience, Hoboken (2007)

    Google Scholar 

  40. Tang, H., Ismail-Beigi, S.: Novel precursor for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115,501 (2007)

    Google Scholar 

  41. Totzeck, M., Ulrich, W., Göhnermeier, A., Kaiser, W.: Semiconductor fabrication: Pushing deep ultraviolet lithography to its limits. Nature Photonics 1, 629 (2007)

    Article  Google Scholar 

  42. Vlasov, Y., Bo, X., Sturm, J., Norris, D.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289 (2001)

    Article  Google Scholar 

  43. Woodcroft, B.: The Pneumatics of Hero of Alexandria. Taylor Walton and Maberly, London (1851)

    Google Scholar 

  44. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  45. Yablonovitch, E.: Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge significant and stimulating scientific discussion with Cem Özdoğan (Çankaya) and Jens Kunstmann (Dresden) about basic properties of boron-carbon nanomaterials, and the invaluable support of Alexander Leymann (Greifswald) for modeling of photonic structures. This research was performed in the framework of the project COST MP0702: Towards Functional Sub-Wavelength Photonic Structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Quandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Quandt, A., Ferrari, M., Righini, G.C. (2010). Towards Integrated Nanoelectronic and Photonic Devices. In: Baleanu, D., Guvenc, Z., Machado, J. (eds) New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3293-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3293-5_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3292-8

  • Online ISBN: 978-90-481-3293-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics