Skip to main content

Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering

  • Conference paper
Metastable Systems under Pressure

Abstract

Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfisen, C. B. (1973) Principles that govern the folding of protein chains, Science 181, 223–230

    Article  ADS  Google Scholar 

  2. Karplus, M. (1997) The Levinthal paradox: yesterday and to day, Fold. Des. 2, S69–S75

    Article  Google Scholar 

  3. Frauenfelder, H., Sligar, S.G., and Wolynes P.G. (1991) The energy landscapes and motions of proteins, Science 254, 1598–1603

    Article  ADS  Google Scholar 

  4. Dill, K. A., and Chan, H. S. (1997) From Levinthal to pathways to funnels, Nat. Struct. Biol. 4, 10–9

    Article  Google Scholar 

  5. Dobson, C. M. (2001) The structural basis of protein folding ans its links with human disease, Philos. Trans. R. Soc. Lond. B356, 133–145

    Article  Google Scholar 

  6. Chen, X., and Schoenborn, B. P. (1990) Hydration in protein crystals. A neutron diffraction analysis of carbonmonoxymyoglobin, Acta Crystallographica B46, 195–208

    Google Scholar 

  7. Yon, J. M. (2004) Aggregation, protein. In : Meyers RA, ed. Encyclopedia of molecular cell biology and molecular medicine, (New York: John Wiley) 23–52

    Google Scholar 

  8. Hite, B. H. (1899) The effect of pressure in the preservation of milk, Bulletin of West Virginia University Agricultural Experimental Station 58, 15–35

    Google Scholar 

  9. Bridgman, P. W. (1914) The coagulation of albumen by pressure, J. Biol. Chem. 19, 511–512

    Google Scholar 

  10. Weber, G., Drickamer, H. G. (1983) The effect of high pressure upon proteins and other biomolecules, Q. Rev. Biophys. 16, 89–112

    Article  Google Scholar 

  11. Heremans, K. (Ed.) (1997) High Pressure Research in Bioscience and Biotechnology, (Leuven University Press, Louvain)

    Google Scholar 

  12. Taniguchi, Y., Stanley, H. E., and Ludwig, H. (Eds.) (2001) Biological Systems under Extreme Conditions: Structure and Function, (Springer, Heidelberg)

    Google Scholar 

  13. Heremans, K. K. (2004) Biology under extreme conditions, High Press. Res. 24 (1), 57–66

    Google Scholar 

  14. Suzuki, K. (1960) Studies on the kinetics of protein denaturation under high pressure, Review of Physical Chemistry of Japan 29, 91– 98

    Google Scholar 

  15. Hawley S. A. (1971) Reversible pressure-temperature denaturation of chymotrypsinogen, Biochemistry 10, 2436–2442

    Article  Google Scholar 

  16. Smeller, L. (2002) Pressure-temperature phase diagram of biomolecules, Biochimica et Biophysica Acta 1595, 11–29

    Article  Google Scholar 

  17. Lesch, H., Hecht, C., and Friedrich, J. (2004) Protein phase diagrams: the physics behind their elliptic shape, Journal of Chemical Physics 121, 12671–12675

    Article  ADS  Google Scholar 

  18. Winter, R., and Dzwolak, W., (2004) Temperature-pressure configurational landscape of lipid bilayers and proteins, Cell. Mol. Biol. 50, 397–417

    Google Scholar 

  19. Meersman, F., Smeller, L., and Heremans, K. (2002) Comparative Fourier transform infrared spectroscopy of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin, Biophysical Journal 82, 2635–2644

    Article  ADS  Google Scholar 

  20. Squires, G. L. (1978) Introduction to the theory of Thermal Neutron Scattering (Cambridge, University Press)

    Google Scholar 

  21. Lovesey, S. M. (1984) Theory of neutron scattering from condensed matter (Oxford University Press Eds)

    Google Scholar 

  22. Jacrot, B. (1976) The study of biological structures by neutron scattering from solution, Rep. Prog. Phys. 39, 911–935

    Article  ADS  Google Scholar 

  23. Zaccaï, G., and Jacrot, B. (1983) Small Angle Neutron Scattering, Ann. Rev. Biophys. Bioeng. 12, 139–157

    Article  Google Scholar 

  24. Takeda, N., Nakano, K., Kato, M., and Taniguchi, Y. (1998) Pressure-induced structural rearrangements of bovine pancreatic trypsin inhibitor studied by FTIR spectroscopy, Biospectroscopy 4, 209–216

    Article  Google Scholar 

  25. Appavou, M.S., Gibrat, G., Bellissent-Funel, M.-C., Plazanet, M., Pieper, J., Buschteiner, A., and Annighofer, B. (2005) Influence of a medium pressure on structure and dynamics of a BPTI protein, J. Phys. Condens. Matter. 17, S3093–S3099

    Article  ADS  Google Scholar 

  26. Appavou, M. S., Gibrat, G., and Bellissent-Funel, M.-C. (2006) Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): Small angle and quasi-elastic neutron scattering studies, Biochimica et Biophysica Acta 1764, 414–423

    Google Scholar 

  27. Gallagher, W. H., and Woodward, C. K. (1989) The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor: a dynamic light scattering study of a small protein, Biopolymers. 28, 2001–2024

    Article  Google Scholar 

  28. Kitchen, D. B., Reed, L. H., and Levy, R. M. (1992) Molecular dynamics simulation of solvated protein at high pressure, Biochemistry 31, 10083–10093

    Article  Google Scholar 

  29. Bée, M. (1988) Quasi-elastic neutron scattering, principles and applications in solid state chemistry, biology and materials science (Adam Hilger, Bristol, Philadelphia 0

    Google Scholar 

  30. Gallagher, W. H., and Woodward, C. K. (1989) The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor: a dynamic light scattering study of a small protein, Biopolymers 28, 2001–2024

    Article  Google Scholar 

  31. Zanotti, J.-M., Bellissent-Funel, M.-C., and Parello, J. (1999) Hydrationcoupled dynamics in proteins studied by neutron scattering and NMR. The case of the typical EF-hand calcium-binding parvalbumin, Biophys. J. 76, 2390–2411

    Article  Google Scholar 

  32. Perez, J., Zanotti, J. M., and Durand, D. (1999) Evolution of the internal dynamics of two globular Proteins from Dry Powder to solution. Biophysical Journal 77, 454–469

    Article  ADS  Google Scholar 

  33. Gibrat, G., Blouquit, Y., Craescu, C.T., and Bellissent-Funel, M-C. (2008) Biophysical studies of thermal denaturation of calmodulin protein: Dynamics, Biophysical Journal 95, 5247–5256

    Article  ADS  Google Scholar 

  34. Brunne, R. M., and Van Gunsteren, W. F. (1993) Dynamical properties of bovine pancreatic trypsin inhibitor from a molecular dynamics simulation at 5000 atm, FEBS Letters 323, 215–217

    Article  Google Scholar 

  35. Mentré, P., and Hui Bon Hoa, G. (2000) Effects of High Hydrostatic Pressures on Living Cells: A Consequence of the Properties of Macromolecules and Macromolecules-associated Water, Intern. Rev. Cyt. 201, 1–84

    Article  Google Scholar 

  36. Doster, W., and Gebhardt, R. (2003) High pressure-unfolding of myoglobin studied by dynamic neutron scattering, Chem. Phys. 292, 383–387

    Article  Google Scholar 

  37. Loupiac, C., Bonetti, M., Pin, S., and Calmettes, P. (2006) β-lactoglobulin under high pressure studied by small-angle neutron scattering, Biochimica et Biophysica Acta 1764, 211–23

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bellissent-Funel, MC., Appavou, MS., Gibrat, G. (2010). Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_27

Download citation

Publish with us

Policies and ethics