Skip to main content

A Procedure to Quantify the Short Range Order of Disordered Phases

  • Conference paper
Metastable Systems under Pressure

Abstract

Determination of the short- and intermediate-range structure of disordered materials is a necessary step to fully understand their properties. Despite of this, no generally accepted procedure exists to date to extract structural information from diffraction data. In this paper we describe a method which enables determination of the short-range structure of disordered molecular phases. This general method is applied to one of the first studied molecular liquids, carbon tetrachloride, and to its plastic phase being able to unravel the so called local density paradox: although molecules are closer in the liquid than in the plastic phase, the density of the former is lower than that of the later. The analysis of the short range order in both phases shows that although the minimal energy configuration allows a closer approach of molecules, it hinders the formation of the face centered cubic long range ordered lattice due to the difficulty of molecules to form stacked structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowden L. J., and Chandler D. (1974) J. Chem. Phys. 61(12), 5228; Jedlovszky P. (1997) J. Chem. Phys. 107(18), 7433

    Article  ADS  Google Scholar 

  2. McDonald I., Bounds D. G., and Klein M. L. (1982) Mol. Phys. 45(3), 521

    Article  ADS  Google Scholar 

  3. Jovari P., Meszaros G., Pusztai L., and Svab E. (2001), J. Chem. Phys. 114, 8082

    Article  ADS  Google Scholar 

  4. Rey R., Pardo L.C., Llanta E., Ando K., López D. O., Tamarit J. Ll., and Barrio M. (2001) J. Chem. Phys. 112(17), 7505

    Article  ADS  Google Scholar 

  5. Rey R. J. (2007) Chem. Phys. 126(16), 164506

    ADS  Google Scholar 

  6. Pardo L. C., Barrio M., Tamarit J. Ll., López D. O., Salud J., and Oonk H. A. J. (2005) Chem. Mater. 17, 6146; Pardo L. C., Barrio M., Tamarit J. Ll., López D. O., Salud J., Negrier P., and Mondieig D. (2001) J. Phys. Chem. 105, 10326

    Article  Google Scholar 

  7. McDonald I., Bounds D. G., and Klein M. L. (1982) Mol. Phys. 45, 521; Breymann W. and Pick R. M. (1989) J. Chem. Phys. 91, 3119; More M., Lefebvre J., Hennion B., Powell B. M., and Zeyen C. M. E. (1980) J. Phys. C 13, 2833

    Article  ADS  Google Scholar 

  8. Veglio N., Bermejo F. J., Pardo L. C., Tamarit J. L., and Cuello G. J. (2005) Phys. Rev. E 72, 031502; Pardo L. C., Veglio N., Bermejo F. J., Tamarit J. L., and Cuello G. J. (2005) Phys. Rev. B 72, 014206

    Article  ADS  Google Scholar 

  9. Cuello G. J. (2008), J. Phys.: Cond. Matt. 20, 244109; Fischer E, Barnes A. C., and Salmon P. S. (2006) Rep. Prog. Phys. 69, 233–299; Talón C., Bermejo F. J., Cabrillo C., Cuello G. J., González M. A., Richardson Jr J. W., Criado A., Ramos M. A., Vieira S., Cumbrera F. L., and González L. M. (2002), Phys. Rev. Lett. 88, 115506–1–4

    Article  ADS  Google Scholar 

  10. Sivia D., and Skilling J., Data Analysis: A Bayesian Tutorial, Oxford University Press isbn: 978-0-19-856832-2 (2006)

    Google Scholar 

  11. Pardo L. C., Bermejo F. J., Tamarit J. Ll., Cuello G. J., Lunkenheimer P., and Loidl A. (2007) J. Non-Crys. Sol. 353 (8–10), 999–1001

    Article  ADS  Google Scholar 

  12. For reviews on applications of the method see McGreevy R. L. (2001) J. Phys.: Condens. Matter 13, R877; Evrard G., and Pusztai L. (2005) J. Phys.: Condens. Matter (Special Issue) 17, S1

    Article  ADS  Google Scholar 

  13. see http://www.isis.rl.ac.uk/Disordered/DMGroup/DM_epsr.htm and references therein

  14. Karlsson L., and McGreevy R. L. (1997) Physica B, 100, 234–236

    Google Scholar 

  15. Jedlovszky P., Vincze A., and Horvai G. (2004) Phys. Chem. Chem. Phys. 6, 1874

    Article  Google Scholar 

  16. Breymann W., and Pick R. M. (1989) J. Chem. Phys. 91, 3119; More M., Lefebvre J., Hennion B., Powell B. M., and Zeyen, C.M. E. (1980) J. Phys. C 13, 2833; Rey R. (2008) J. Phys. Chem. B, 112(2), 344–357

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pardo, L.C., Rovira-Esteva, M., Tamarit, J.L., Veglio, N., Bermejo, F.J., Cuello, G.J. (2010). A Procedure to Quantify the Short Range Order of Disordered Phases. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_6

Download citation

Publish with us

Policies and ethics