Skip to main content

Recent Advances in Ruthenium Catalysts for Alkene Metathesis

  • Conference paper
Green Metathesis Chemistry

Abstract

Although ruthenium initiators currently available for alkene metathesis are endowed with many beneficial properties, there is still room for improvement and many research groups are actively pursuing the quest for the next generation of alkene metathesis catalysts. The present contribution aims at providing a critical survey of some of the most significant achievements accomplished toward this goal during the last few years. New ligands and complexes designed to achieve the appropriate balance between electronic and steric properties of the ruthenium active centres are depicted, and their stability, activity, and chemoselectivity are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grubbs RH (ed.) (2003) Handbook of metathesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Astruc D (2005) The metathesis reaction: from a historical perspective to recent developments. New J Chem 29:42–56

    Article  CAS  Google Scholar 

  3. Astruc D (2006) Answer to Katz's criticisms on the history of metathesis. New J Chem 30:1848–1852

    Article  CAS  Google Scholar 

  4. Delaude L, Noels AF (2007) Metathesis. In: Seidel A (ed.), Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, vol. 26, pp. 920–958

    Google Scholar 

  5. Connon SJ, Blechert S (2003) Recent developments in olefin cross-metathesis. Angew Chem Int Ed 42:1900–1923

    Article  CAS  Google Scholar 

  6. Nicolaou KC, Bulger PG, Sarlah D (2005) Metathesis reactions in total synthesis. Angew Chem Int Ed 44:4490–4527

    Article  CAS  Google Scholar 

  7. Dragutan V, Dragutan I (2006) A resourceful new strategy in organic synthesis: tandem and stepwise metathesis/non-metathesis catalytic processes. J Organomet Chem 691:5129–5147

    Article  CAS  Google Scholar 

  8. Kotha S, Lahiri K (2007) Synthesis of diverse polycyclic compounds via catalytic metathesis. Synlett 18:2767–2784

    Article  Google Scholar 

  9. Frenzel U, Nuyken O (2002) Ruthenium-based metathesis initiators: development and use in ring-opening metathesis polymerization. J Polym Sci A: Polym Chem 40:2895–2916

    Article  CAS  Google Scholar 

  10. Slugovc C (2004) The ring opening metathesis polymerisation toolbox. Macromol Rapid Commun 25:1283–1297

    Article  CAS  Google Scholar 

  11. Dragutan V, Dragutan I, Fischer H (2008) Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part I: polymers containing main group metals. J Inorg Organomet Polym Mater 18:18–31

    Article  CAS  Google Scholar 

  12. Dragutan I, Dragutan V, Fischer H (2008) Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part II: polymers containing transition metals. J Inorg Organomet Polym Mater 18:311–324

    Article  CAS  Google Scholar 

  13. Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR (2001) Comparative investigation of ruthenium-based metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands. Chem Eur J 7:3236–3253

    Article  Google Scholar 

  14. Seiders TJ, Ward DW, Grubbs RH (2001) Enantioselective ruthenium-catalyzed ring-closing metathesis. Org Lett 3:3225–3228

    Article  CAS  Google Scholar 

  15. Vougioukalakis GC, Grubbs RH (2007) Ruthenium olefin metathesis catalysts bearing an N-fluorophenyl-N-mesityl-substituted unsymmetrical N-heterocyclic carbene. Organometallics 26:2469–2472

    Article  CAS  Google Scholar 

  16. Conrad JC, Parnas HH, Snelgrove JL, Fogg DE (2005) Highly Efficient Ru-pseudohalide catalysts for olefin metathesis. J Am Chem Soc 127:11882–11883

    Article  CAS  Google Scholar 

  17. Conrad JC, Camm KD, Fogg DE (2006) Ru-aryloxide metathesis catalysts with enhanced lability: assessing the efficiency and homogeneity of initiation via ring-opening metathesis polymerization studies. Inorg Chim Acta 359:1967–1973

    Article  CAS  Google Scholar 

  18. Monfette S, Fogg DE (2006) Ruthenium metathesis catalysts containing chelating aryloxide ligands. Organometallics 25:1940–1944

    Article  CAS  Google Scholar 

  19. Vougioukalakis GC, Grubbs RH (2008) Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands. J Am Chem Soc 130:2234–2245

    Article  CAS  Google Scholar 

  20. Michrowska A, Bujok R, Harutyunyan S, Sashuk V, Dolgonos G, Grela K (2004) Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: enhancement of catalyst activity through electronic activation. J Am Chem Soc 126:9318–9325

    Article  CAS  Google Scholar 

  21. Michrowska A, Gulajski L, Grela K (2006) A simple and practical phase–separation approach to the recycling of a homogeneous metathesis catalyst. Chem Commun: 841–843

    Google Scholar 

  22. Gulajski L, Michrowska A, Bujok R, Grela K (2006) New tunable catalysts for olefin metathesis: controlling the initiation through electronic factors. J Mol Catal A: Chem 254:118–123

    Article  CAS  Google Scholar 

  23. Michrowska A, Gulajski L, Kaczmarska Z, Mennecke K, Kirschning A, Grela K (2006) A green catalyst for green chemistry: synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group. Green Chem 8:685–688

    Article  CAS  Google Scholar 

  24. Gulajski L, Sledz P, Lupa A, Grela K (2008) Olefin metathesis in water using acoustic emulsification. Green Chem 10:271–274

    Article  CAS  Google Scholar 

  25. Gulajski L, Michrowska A, Naroznik J, Kaczmarska Z, Rupnicki L, Grela K (2008) A highly active aqueous olefin metathesis catalyst bearing a quaternary ammonium group. ChemSusChem 1:103–109

    Article  CAS  Google Scholar 

  26. Rix D, Caïjo F, Laurent I, Gulajski L, Grela K (2007) Highly recoverable pyridinium-tagged Hoveyda-Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability. Chem Commun: 3771–3773

    Google Scholar 

  27. Binder JB, Guzei IA, Raines RT (2007) Salicylaldimine ruthenium alkylidene complexes: metathesis catalysts tuned for protic solvents. Adv Synth Catal 349:395–404

    Article  CAS  Google Scholar 

  28. Jordan JP, Grubbs RH (2007) Small-molecule N-heterocyclic-carbene-containing olefin-metathesis catalysts for use in water. Angew Chem Int Ed 46:5152–5155

    Article  CAS  Google Scholar 

  29. Bruneau C, Dixneuf PH (2006) Metal vinylidenes and allenylidenes in catalysis: applications in anti-Markovnikov additions to terminal alkynes and alkene metathesis. Angew Chem Int Ed 45:2176–2203

    Article  CAS  Google Scholar 

  30. Yao Q, Zhang Y (2003) Olefin metathesis in the ionic liquid 1-butyl–3-methylimidazolium hexafluorophosphate using a recyclable Ru catalyst: remarkable effect of a designer ionic tag. Angew Chem Int Ed 42:3395–3398

    Article  CAS  Google Scholar 

  31. Audic N, Clavier H, Mauduit M, Guillemin J-C (2003) An ionic liquid-supported ruthenium carbene complex: a robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquid. J Am Chem Soc 125:9248–9249

    Article  CAS  Google Scholar 

  32. Clavier H, Audic N, Mauduit M, Guillemin J-C (2004) Ring-closing metathesis in biphasic BMI∙PF6 ionic liquid/toluene medium: a powerful recyclable and environmentally friendly process. Chem Commun: 2282–2283

    Google Scholar 

  33. Yao Q, Sheets M (2005) An ionic liquid-tagged second generation Hoveyda-Grubbs ruthenium carbene complex as highly reactive and recyclable catalyst for ring-closing metathesis of di-, tri- and tetrasubstituted dienes. J Organomet Chem 690:3577–3584

    Article  CAS  Google Scholar 

  34. Clavier H, Audic N, Guillemin J-C, Mauduit M (2005) Olefin metathesis in room temperature ionic liquids using imidazolium-tagged ruthenium complexes. J Organomet Chem 690:3585–3599

    Article  CAS  Google Scholar 

  35. Thurier C, Fischmeister C, Bruneau C, Olivier-Bourbigou H, Dixneuf PH (2007) Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids. J Mol Catal A: Chem 268:127–133

    Article  CAS  Google Scholar 

  36. Matsugi M, Curran DP (2005) Synthesis, reaction, and recycle of light fluorous Grubbs-Hoveyda catalysts for alkene metathesis. J Org Chem 70:1636–1642

    Article  CAS  Google Scholar 

  37. Anderson DR, Ung T, Mkrtumyan G, Bertrand G, Grubbs RH, Schrodi Y (2008) Kinetic selectivity of olefin metathesis catalysts bearing cyclic (alkyl)(amino)carbenes. Organometallics 27:563–566

    Article  CAS  Google Scholar 

  38. Ung T, Hejl A, Grubbs RH, Schrodi Y (2004) Latent ruthenium olefin metathesis catalysts that contain an N-heterocyclic carbene ligand. Organometallics 23:5399–5401

    Article  CAS  Google Scholar 

  39. Slugovc C, Burtscher D, Stelzer F, Mereiter K (2005) Thermally switchable olefin metathesis initiators bearing chelating carbenes: influence of the chelate's ring size. Organometallics 24:2255–2258

    Article  CAS  Google Scholar 

  40. Allaert B, Dieltiens N, Ledoux N, Vercaemst C, Van Der Voort P, Stevens CV, Linden A, Verpoort F (2006) Synthesis and activity for ROMP of bidentate Schiff base substituted second generation Grubbs catalysts. J Mol Catal A: Chem 260:221–226

    Article  CAS  Google Scholar 

  41. Ledoux N, Alaert B, Schaubroeck D, Monsaert S, Drozdzak R, Van Der Voort P, Verpoort F (2006) In situ generation of highly active olefin metathesis initiators. J Organomet Chem 691:5482–5486

    Article  CAS  Google Scholar 

  42. Ben-Asuly A, Tzur E, Diesendruck CE, Sigalov M, Goldberg I, Lemcoff NG (2008) A thermally switchable latent ruthenium olefin metathesis catalyst. Organometallics 27:811–813

    Article  CAS  Google Scholar 

  43. Kost T, Sigalov M, Goldberg I, Ben-Asuly A, Lemcoff NG (2008) Latent sulfur chelated ruthenium catalysts: steric acceleration effects on olefin metathesis. J Organomet Chem 693:2200–2203

    Article  CAS  Google Scholar 

  44. Dragutan V, Dragutan I, Verpoort F (2005) Ruthenium indenylidene complexes. Metathesis catalysts with enhanced activity. Platinum Metals Rev 49:33–40

    Article  CAS  Google Scholar 

  45. Boeda F, Clavier H, Nolan SP (2008) Ruthenium–indenylidene complexes: powerful tools for metathesis transformations. Chem Commun: 2726–2740

    Google Scholar 

  46. Fürstner A, Hill AF, Liebl M, Wilton-Ely JDET (1999) Coordinatively unsaturated ruthenium allenylidene complexes: highly effective, well defined catalysts for the ring-closure metathesis of ,-dienes and dienynes. Chem Commun: 601–603

    Google Scholar 

  47. Fürstner A, Guth O, Düffels A, Seidel G, Liebl M, Gabor B, Mynott R (2001) Indenylidene complexes of ruthenium: optimized synthesis, structure elucidation, and performance as catalysts for olefin metathesis—application to the synthesis of the ADE-ring system of Nakadomarin A. Chem Eur J 7:4811–4820

    Article  Google Scholar 

  48. Jafarpour L, Schanz H-J, Stevens ED, Nolan SP (1999) Indenylidene-imidazolylidene complexes of ruthenium as ring-closing metathesis catalysts. Organometallics 18:5416–5419

    Article  CAS  Google Scholar 

  49. Clavier H, Nolan SP (2007) N-Heterocyclic carbene and phosphine ruthenium indenylidene precatalysts: a comparative study in olefin metathesis. Chem Eur J 13:8029–8036

    Article  CAS  Google Scholar 

  50. Boeda F, Bantreil X, Clavier H, Nolan SP (2008) Ruthenium–indenylidene complexes: scope in cross-metathesis transformations. Adv Synth Catal 350:2959–2966

    Article  CAS  Google Scholar 

  51. de Fremont P, Clavier H, Montembault V, Fontaine L, Nolan SP (2008) Ruthenium–indenylidene complexes in ring opening metathesis polymerization (ROMP) reactions. J Mol Catal A: Chem 283:108–113

    Article  Google Scholar 

  52. Monsaert S, Drozdzak R, Dragutan V, Dragutan I, Verpoort F (2008) Indenylidene–ruthenium complexes bearing saturated N-heterocyclic carbenes: synthesis and catalytic investigation in olefin metathesis reactions. Eur J Inorg Chem: 432–440

    Google Scholar 

  53. Opstal T, Verpoort F (2002) Ruthenium indenylidene and vinylidene complexes bearing Schiff bases: potential catalysts in enol-ester synthesis. Synlett: 935–941

    Google Scholar 

  54. Opstal T, Verpoort F (2003) Synthesis of highly active ruthenium indenylidene complexes for atom-transfer radical polymerization and ring-opening-metathesis polymerization. Angew Chem Int Ed 42:2876–2879

    Article  CAS  Google Scholar 

  55. Delaude L, Szypa M, Demonceau A, Noels AF (2002) New in situ generated ruthenium catalysts bearing N-heterocyclic carbene ligands for the ring-opening metathesis polymerization of cyclooctene. Adv Synth Catal 344:749–756

    Article  CAS  Google Scholar 

  56. Maj AM, Delaude L, Demonceau A, Noels AF (2007) Synthesis of N-heterocyclic carbene precursors bearing biphenyl units and their use in ruthenium-catalyzed ring-opening metathesis polymerization. J Organomet Chem 692:3048–3056

    Article  CAS  Google Scholar 

  57. Tudose A, Demonceau A, Delaude L (2006) Imidazol(in)ium-2-carboxylates as N-heterocy-clic carbene precursors in ruthenium-arene catalysts for olefin metathesis and cyclopropa-nation. J Organomet Chem 691:5356–5365

    Article  CAS  Google Scholar 

  58. Delaude L, Demonceau A, Noels AF (2006) Synthesis and application of new N-heterocyclic carbene ruthenium complexes in catalysis: a case study. Curr Org Chem 10:203–215

    Article  CAS  Google Scholar 

  59. Ahr M, Thieuleux C, Copéret C, Fenet B, Basset J-M (2007) Noels' vs. Grubbs' catalysts: evidence for one unique active species from two different systems! Adv Synth Catal 349:1587–1591

    Article  CAS  Google Scholar 

  60. Sauvage X, Borguet Y, Noels AF, Delaude L, Demonceau A (2007) Homobimetallic ruthenium-N-heterocyclic carbene complexes: synthesis, characterization, and catalytic applications. Adv Synth Catal 349:255–265

    Article  CAS  Google Scholar 

  61. Sauvage X, Borguet Y, Zaragoza G, Demonceau A, Delaude L (2009) Homobimetallic ruthenium vinylidene, allenylidene, and indenylidene complexes: synthesis, characterization, and catalytic studies. Adv Synth Catal 351:441–455

    Article  CAS  Google Scholar 

  62. Tzur E, Ben-Asuly A, Diesendruck CE, Goldberg I, Lemcoff NG (2008) Homodinuclear ruthenium catalysts for dimer ring-closing metathesis. Angew Chem Int Ed 47:6422–6425

    Article  CAS  Google Scholar 

  63. Clavier H, Grela K, Kirschning A, Mauduit M, Nolan SP (2007) Sustainable concepts in olefin metathesis. Angew Chem Int Ed 46:6786–6801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerian Dragutan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Delaude, L., Demonceau, A., Dragutan, I., Dragutan, V. (2010). Recent Advances in Ruthenium Catalysts for Alkene Metathesis. In: Dragutan, V., Demonceau, A., Dragutan, I., Finkelshtein, E.S. (eds) Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3433-5_1

Download citation

Publish with us

Policies and ethics