Skip to main content

Genesis of Barrett’s Neoplasia: Current Concepts

  • Chapter
  • First Online:
Mechanisms of Oncogenesis

Part of the book series: Cancer Growth and Progression ((CAGP,volume 12))

Abstract

Barrett’esophagus is the replacement of the esophageal squamous epithelium with metaplastic columnar epithelium. This phenomenon, related to gastro-esophageal reflux, has increased in incidence over the last two decades, and with it there has been a similar increase in Barrett’s associated adenocarcinomas. In this chapter we describe the pathologic features of Barrett’s esophagus and of Barrett’s associated dysplasia and carcinoma. We address important aspects related to the clinical presentation, endoscopic findings, and differential diagnosis of Barrett’s esophagus. In addition, we present an overview of the molecular pathways involved in the genesis and progression of Barrett’s esophagus, and on the identification of potential molecular markers predictive of progression from normal esophageal mucosa to Barrett’s esophagus, to dysplasia, to carcinoma. Finally, we briefly review the use of recent technologies including cDNA microarray, micro-RNA, and proteomics to improve the diagnosis of Barrett’s associated dysplasia, and to identify gene or protein signatures predictive of progression in Barrett’s esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spechler SJ, Goyal RK. Barrett’s esophagus. N Engl J Med. 1986;315:362–71.

    Article  PubMed  CAS  Google Scholar 

  2. Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97:142–6.

    Article  PubMed  Google Scholar 

  3. Gamliel Z, Krasna MJ. Multimodality treatment of esophageal cancer. Surg Clin North Am. 2005;85:621–30.

    Article  PubMed  Google Scholar 

  4. Dent J, Bremner CG, Collen MJ, et al. Barrett’s oesophagus. J Gastroenterol Hepatol. 1991;6:1–22.

    Article  PubMed  CAS  Google Scholar 

  5. Collen MJ, Lewis JH, Benjamin SB. Gastric acid hypersecretion in refractory gastroesophageal reflux disease. Gastroenterology. 1990;98:654–61.

    PubMed  CAS  Google Scholar 

  6. Mulholland MW, Reid BJ, Levine DS, et al. Elevated gastric acid secretion in patients with Barrett’s metaplastic epithelium. Dig Dis Sci. 1989;34:1329–34.

    Article  PubMed  CAS  Google Scholar 

  7. Meyer W, Vollmar F, Bar W. Barrett-esophagus following total gastrectomy: a contribution to its pathogenesis. Endoscopy. 1979;11:121–6.

    Article  PubMed  CAS  Google Scholar 

  8. Othersen HB Jr, Ocampo RJ, Parker EF, et al. Barrett’s esophagus in children: diagnosis and management. Ann Surg. 1993;217:676–80.

    Article  PubMed  Google Scholar 

  9. Rector LE, Connerley ML. Aberrant mucosa in the esophagus in infants and children. Arch Pathol. 1941;31:285–94.

    Google Scholar 

  10. Hamilton SR. Pathogenesis of columnar cell-lined (Barrett’s) esophagus. In: Spechler SJ, Goyal RK, eds. Barrett’s Esophagus: Pathophysiology, Diagnosis and Management. New York: Elsevier Science; 1985:29–37.

    Google Scholar 

  11. Woolf GM, Riddell RH, Irvine EJ, et al. A study to examine agreement between endoscopy and histology for the diagnosis of columnar-lined (Barrett’s) esophagus. Gastrointest Endosc. 1989;35:541–4.

    Article  PubMed  CAS  Google Scholar 

  12. Paull A, Trier JS, Dalton MD, et al. The histologic spectrum of Barrett’s esophagus. N Engl J Med. 1976;295:476–80.

    Article  PubMed  CAS  Google Scholar 

  13. Hameeteman W, Tytgat GN, Houthoff HJ, et al. Barrett’s esophagus: development of dysplasia and adenocarcinoma. Gastroenterology. 1989;96:1249–56.

    PubMed  CAS  Google Scholar 

  14. Haggitt RC. Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum Pathol. 1994;25:982–93.

    Article  PubMed  CAS  Google Scholar 

  15. Blot WJ, Devesa SS, Kneller RW, et al. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA. 1991;265:1287–89.

    Article  PubMed  CAS  Google Scholar 

  16. Pera M, Cameron AJ, Trastek VF, et al. Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology. 1993;104:510–3.

    PubMed  CAS  Google Scholar 

  17. Spechler SJ, Goyal RK. The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett. Gastroenterology. 1996;110:614–21.

    Article  PubMed  CAS  Google Scholar 

  18. Hamilton SR, Smith RR, Cameron JL. Prevalence and characteristics of Barrett esophagus in patients with adenocarcinoma of the esophagus or esophagogastric junction. Hum Pathol. 1988;19:942–8.

    Article  PubMed  CAS  Google Scholar 

  19. McArdle JE, Lewin KJ, Randall G, et al. Distribution of dysplasias and early invasive carcinoma in Barrett’s esophagus. Hum Pathol. 1992;23:479–82.

    Article  PubMed  CAS  Google Scholar 

  20. Hamilton SR. Reflux esophagitis and Barrett’s esophagus. In: Goldman H, Appelman HD, Kaufman N, eds. Gastrointestinal Pathology. Baltimore, MD: Williams & Wilkins; 1990:11–68.

    Google Scholar 

  21. Riddell RH, Goldman H, Ransohoff DF, et al. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical implications. Hum Pathol. 1983;14:931–68.

    Article  PubMed  CAS  Google Scholar 

  22. Hamilton SR. Adenocarcinoma in Barrett’s esophagus. In: Whitehead R, ed. Gastrointestinal and Esophageal Pathology. Edinburgh, Scotland: Churchill Livingstone; 1989;683–706.

    Google Scholar 

  23. Antonioli DA. Esophagus. In: Henson DE, Albores-Saavedra J, eds. Pathology of Incipient Neoplasia. Philadelphia, PA: WB Saunders Co; 1993;64–84.

    Google Scholar 

  24. Reid BJ, Weinstein WM, Lewin KJ, et al. Endoscopic biopsy can detect high-grade dysplasia or early adenocarcinoma in Barrett’s esophagus without grossly recognizable neoplastic lesions. Gastroenterology. 1988;94:81–90.

    PubMed  CAS  Google Scholar 

  25. Smith RR, Hamilton SR, Boitnott JK, et al. The spectrum of carcinoma arising in Barrett’s esophagus: a clinicopathologic study of 26 patients. Am J Surg Pathol. 1984;8:563–73.

    Article  PubMed  CAS  Google Scholar 

  26. Levine DS, Haggitt RC, Blount PL, et al. An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus. Gastroenterology. 1993;105:40–50.

    PubMed  CAS  Google Scholar 

  27. Sharma P. Recent advances in Barrett’s esophagus: short-segment Barrett’s esophagus and carida intestinal metaplasia. Semin Gastrointest Dis. 1999;10:93–102

    PubMed  CAS  Google Scholar 

  28. Sharma P, Sampliner RE. Short segment Barrett’s esophagus and intestinal metaplasia of the cardia – it’s not all symantics!! Am J Gastroenterol. 1998;93:2303–4.

    PubMed  CAS  Google Scholar 

  29. Sharma P, Weston AP, Morales T, et al. Relative risk of dysplasia for patients with intestinal metaplasia in the distal oesophagus and in the gastric cardia. Gut. 2000;46:9–13.

    Article  PubMed  CAS  Google Scholar 

  30. Sampliner RE. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol. 1998;93:1028–32.

    Article  PubMed  CAS  Google Scholar 

  31. Srivastava A, Odze RD, Lauwers GY, Redston M, Antonioli DA, Glickman JN. Morphologic features are useful in distinguishing Barrett esophagus from carditis with intestinal meatplasia. Am J Surg Pathol. 2007;31:1733–41.

    Article  PubMed  Google Scholar 

  32. Borhan-Manesh F, Farnum JB. Incidence of heterotopic gastric mucosa in the upper oesophagus. Gut. 1991;32:968–72.

    Article  PubMed  CAS  Google Scholar 

  33. Wang HH, Zeroogian JM, Spechler SJ, Goyal RK, Antonioli DA. Prevalence and significance of pancreatic acinar metaplaisa at the gastroesophageal junction. Am J Surg Pathol. 1996;20:1507–10.

    Article  PubMed  CAS  Google Scholar 

  34. Reid BJ, Blount PL, Rubin CE, et al. Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology. 1992;102:1212–9.

    PubMed  CAS  Google Scholar 

  35. Geisinger KR. Endoscopic biopsies and cytologic brushings of the esophagus are diagnostically complementary. Am J Clin Pathol. 1995;103:295–9.

    PubMed  CAS  Google Scholar 

  36. Chittajallu RS, Falk GW, Goldblum JR et al. Balloon cytology for the detection and surveillance of Barrett’s esophagus. Gastroenterology. 1995;108:71A.

    Google Scholar 

  37. Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D, Wild CP. Prospective study of Cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst. 2000;92:1316–21.

    Article  PubMed  CAS  Google Scholar 

  38. Geddert H, Heep H, Gabbert H, Sarbia M. Expression of Cyclin B1 in the metaplasia-dysplasia-carcinoma sequence of Barrett esophagus. Cancer. 2002;94:212–8.

    Article  PubMed  CAS  Google Scholar 

  39. Barrett MT, Sanchez CA, Galipeau PC, et al. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene. 1996;13:1867–73.

    PubMed  CAS  Google Scholar 

  40. Nakamura T, Nekarda H, Hoelscher AH, et al. Prognostic value of DNA ploidy and c-erbB-2 oncoprotein overexpression in adenocarcinoma of Barrett’s esophagus. Cancer. 1994;73:1785–94.

    Article  PubMed  CAS  Google Scholar 

  41. Fennerty MB, Sampliner RE, Way D, et al. Discordance between flow cytometric abnormalities and dysplasia in Barrett’s esophagus. Gastroenterology. 1989;97:815–20.

    PubMed  CAS  Google Scholar 

  42. Al-Kasspooles M, Moore JH, Orringer MB, et al. Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinomas. Int J Cancer. 1993;4:213–19.

    Article  Google Scholar 

  43. Kumble S, Omary MB, Cartwright CA, et al. Src activation in malignant and premalignant epithelia of Barrett’s esophagus. Gastroenterology. 1997;112:348–56.

    Article  PubMed  CAS  Google Scholar 

  44. Swami S, Kumble S, Triadafilopoulos G, et al. E-cadherin expression in gastroesophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma: an immunohistochemical and immunoblot study. Am J Gastroenterol. 1995;90:1808–13.

    PubMed  CAS  Google Scholar 

  45. Bian YS, Osterheld MC, Bosman FT, Fontolliet C, Benhattar J. Nuclear accumulation of beta-Catenin is a common and early event during neoplastic progression of Barrett esophagus. Am J Clin Pathol. 2000;114:583–90.

    Article  PubMed  CAS  Google Scholar 

  46. Betkas N, Donner A, Wirtz C, Heep H, Gabbert HE, Sarbia M. Allelic loss involving the tumor suppressor genes APC and MCC and expression of the APC protein in the development of dysplasia and carcinoma in Barrett’s esophagus. Am J Clin Pathol. 2000;114:890–5.

    Article  Google Scholar 

  47. Osterheld MC, Bian YS, Bosman FT, Benhattar J, Fontolliet C. Beta-catenin expression and its association with prognostic factors in adenocarcinoma developed in Barrett esophagus. Am J Clin Pathol. 2002;117:451–6.

    Article  PubMed  CAS  Google Scholar 

  48. Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, Mc Conkey C, Stuart RC, Wright N, Harrison R, Jankowski JAZ. Tumour necrosis factor-α in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene. 2002;21:6071–81.

    Article  PubMed  CAS  Google Scholar 

  49. Montgomery E, Mamelak AJ, Gibson M, Maitra A, Sheikh S, Amr S, et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl Immunohistochem Mol Morphol. 2006;14:24–30.

    Article  PubMed  CAS  Google Scholar 

  50. Soslow RA, Petersen CG, Remotti H, Altorki N. Acidic fibroblast growth factor is expressed sequentially in the progression from Barrett’s esophagus to esophageal adenocarcinoma. Dis Esophag. 2001;14:23–7.

    Article  CAS  Google Scholar 

  51. Hammoud ZT, Badve S, Saxena R, Kesler KA, Rieger K, Malkas L, et al. A novel biomarker for the detection of esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2007;133:82–7.

    Article  PubMed  CAS  Google Scholar 

  52. Ray GS, Lee JR, Nwokeji K, et al. Increased immunoreactivity for Rab11, a small GTP-binding protein, in low-grade dysplastic Barrett’s epithelia. Lab Invest. 1997;77:503–11.

    PubMed  CAS  Google Scholar 

  53. Coppola D, Schreiber RH, Mora L, et al. Significance of Fas and Rb protein expression during the progression of Barrett’s metaplasia to adenocarcinoma: platform presentation at the 51st Annual Cancer Symposium of the Society of Surgical Oncology, San Diego, CA, March 26–29, 1998. Ann Surg Oncol. 1998;In press.

    Google Scholar 

  54. Casson AG, Kerkvliet N, O’Malley F. Prognostic value of p53 protein in esophageal adenocarcinoma. J Surg Oncol. 1995;60:5–11.

    Article  PubMed  CAS  Google Scholar 

  55. Hollstein MC, Metcalf RA, Welsh JA, et al. Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acad Sci USA. 1990;87:9958–61.

    Article  PubMed  CAS  Google Scholar 

  56. Blount PL, Ramel S, Raskind WH, et al. 17p allelic deletions and p53 protein overexpression in Barrett’s adenocarcinoma. Cancer Res. 1991;51:5482–6.

    PubMed  CAS  Google Scholar 

  57. Ramel S, Reid BJ, Sanchez CA, et al. Evaluation of p53 protein expression in Barrett’s esophagus by two-parameter flow cytometry. Gastroenterology. 1992;102:1220–8.

    PubMed  CAS  Google Scholar 

  58. Younes M, Lebovitz RM, Lechago LV, et al. p53 protein accumulation in Barrett’s metaplasia, dysplasia and adenocarcinoma: a follow-up study. Gastroenterology. 1993;105:1637–42.

    PubMed  CAS  Google Scholar 

  59. Chatelain D, Flejou JF. High-grade dysplasia and superficial adenocarcinoma in Barrett’s esophagus: histological mapping and expression of p53, p21 and Bcl-2 oncoproteins. Virchows Arch. 2003;442:18–24.

    PubMed  CAS  Google Scholar 

  60. Younes M, Lechago J, Chakraborty S, Ostrowski M, Bridges M, Meriano F, et al. Relationship between dysplasia, p53 protein accumulation, DNA ploidy, and Glut1 overexpression in Barrett metaplasia. Scand J Gastroenterol. 2000;2:131–7.

    Google Scholar 

  61. Weston AP, Banerjee SK, Sharma P, Tran TM, Richards R, Cherian R. p53 Protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterology. 2001;96(5);1355–62.

    Article  CAS  Google Scholar 

  62. Bian YS, Osterheld MC, Bosman FT, Benhattar J, Fontolliet C. p53 Gene mutation and protein accumulation during neoplastic progression in Barrett’s esophagus. Mod Pathol. 2001;14(5);397–403.

    Article  PubMed  CAS  Google Scholar 

  63. Flejou JF, Potet F, Muzeau F, et al. Overexpression of p53 protein in Barrett’s syndrome with malignant transformation. J Clin Pathol. 1993;46:330–3.

    Article  PubMed  CAS  Google Scholar 

  64. Younes M, Ertan A, Lechago LV, et al. p53 Protein accumulation is a specific marker of malignant potential in Barrett’s metaplasia. Dig Dis Sci. 1997;42:697–701.

    Article  PubMed  CAS  Google Scholar 

  65. Glickman JN, Yang A, Shahsafaei A, McKeon F, Odze R. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum Pathol. 2001;32(11);1157–65.

    Article  PubMed  CAS  Google Scholar 

  66. Hall PA, Woodman AC, Campbell SJ, Shepherd NA. Expression of the p53 homologue p63α and ▵Np63α in the neoplastic sequence of Barrett’s oesophagus: correlation with morphology and p53 protein. Gut. 2001;49:618–23.

    Article  PubMed  CAS  Google Scholar 

  67. Hughes SJ, Nambu Y, Soldes OS, et al. Fas/APO-1(CD95) is not translocated to the cell membrane in esophageal adenocarcinoma. Cancer Res. 1997;57:5571–8.

    PubMed  CAS  Google Scholar 

  68. Van Der Woude CJ, Jansen PLM, Tiebosch ATGM, Beuving A, Homan M, Kleibeuker JH, et al. Expression of apoptosis-related proteins in Barrett’s metaplasia-dysplasia-carcinoma sequence: a switch to a more resistant phenotype. Hum Pathol. 2002;33(7);686–92.

    Article  PubMed  CAS  Google Scholar 

  69. Raouf AA, Evoy DA, Carton E, Mulligan E, Griffin MM, Reynolds JV. Loss of Bcl-2 expression in Barrett’s dysplasia and adenocarcinoma is associated with tumor progression and worse survival but not with response to neoadjuvant chemoradiation. Dis Esophag. 2003;16:17–23.

    Article  CAS  Google Scholar 

  70. Kuester D, Dar AA, Moskaluk CC, Krueger S, Meyer F, Hartig R, et al. Early involvement of death-associated protein kinase promoter hypermethylation in the carinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia. 2007;9:236–45.

    Article  PubMed  CAS  Google Scholar 

  71. Li Y, Wo JM, Cai Lu, Zhou Z, Rosenbaum D, Mendez C, et al. Association of metallothionein expression and lack of apoptosis with progression of carcinogenesis in Barrett’s esophagus. Exp Biol Med. 2003;228:286–92.

    CAS  Google Scholar 

  72. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339:58–61.

    Article  PubMed  CAS  Google Scholar 

  73. Bossi P, Viale G, Lee AK, Alfano R, Coggi G, Bosari S. Angiogenesis in colorectal tumors: microvessel quantitation in adenoma and carcinomas with clinicopathological correlations. Cancer Res. 1995;55:5049–53.

    PubMed  CAS  Google Scholar 

  74. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol. 1992;23:755–61.

    Article  PubMed  CAS  Google Scholar 

  75. Millikan KW, Mall JW, Myers JA, Hollinger EF, Doolas A, Saclarides TJ. Do angiogenesis and growth factor expression predict prognosis of esophageal cancer? Am Surg. 2000;66:401–5;405–6 (discussion).

    PubMed  CAS  Google Scholar 

  76. Torres C, Wang H, Turner J, Shahsafaei A, Odze RD. Prognostic significance and effect of chemoradiotherapy on microvessel density (angiogenesis) in esophageal Barrett’s esophagus-associated adenocarcinoma and squamous cell carcinoma. Hum Pathol. 1999;30:753–8.

    Article  PubMed  CAS  Google Scholar 

  77. Couvelard A, Paraf F, Gratio V, Scoazec JY, Henin D, Degott C, et al. Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol. 2000;192:14–8.

    Article  PubMed  CAS  Google Scholar 

  78. Lord RVN, Park JM, Wickramasinghe K, DeMeester SR, Oberg S, Salonga D, et al. Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus. J Thorac Cardiovasc Surg. 2003;125:246–53.

    Article  PubMed  Google Scholar 

  79. Dubois RN, Gupta RA. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1:11–21.

    Article  PubMed  Google Scholar 

  80. Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest. 1999;79:1469–77.

    PubMed  CAS  Google Scholar 

  81. Cheong E, Igali L, Harvey I, Mole M, Lund E, Johnson IT, et al. Cyclo-oxygenase-2 expression in Barrett’s oesophageal carcinogenesis: an immunohitochemical study. Aliment Pharmacol Ther. 2003;17:379–86.

    Article  PubMed  CAS  Google Scholar 

  82. Lagorce C, Paraf F, Vidaud D, Couvelard A, Wendum D, Martin A, et al. Cyclooxygenase-2 is expressed frequently and early in Barrett’s oesophagus and associated adenocarcinoma. Histopathology. 2003;42:457–65.

    Article  PubMed  CAS  Google Scholar 

  83. Buskens CJ, Van Rees BP, Sivula A, Reitsma JB, Haglund C, Bosma P, et al. Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology. 2002;122:1800–7.

    Article  PubMed  CAS  Google Scholar 

  84. Wilson KT. Angiogenic markers, neovascularization and malignant deformation of Barrett’s esophagus. Dis Esophag. 2002;15:16–21.

    Article  CAS  Google Scholar 

  85. Kulke MH, Thakore KS, Thomas G, Wang H, Loda M, Eng C, Odze RD. Microsatellite instability and hMLH1/hMSH2 expression in Barrett esophagus-associated adenocarcinoma. Cancer. 2001; 91:1451–7.

    Article  PubMed  CAS  Google Scholar 

  86. Reichelt U, Duesedau P, Tsourlakis MCh, et al. Frequent homogeneous HER-2 amplification in primary and metastatic adenocarcinoma of the esophagus. Mod Pathol. 2007;20:120–9.

    Article  PubMed  CAS  Google Scholar 

  87. Rauser S, Weis R, Braselmann H, Feith M, Stein HJ, Langer R, et al. Significance of HER2 low-level copy gain in Barrett’s cancer: implications for florescence in situ hybridization testing in tissues. Clin Cancer Res. 2007;13:5115–23.

    Article  PubMed  CAS  Google Scholar 

  88. Lin J, Raoof DA, Thomas DG, Greenson JK, Giordano TJ, Robinson GS, et al. L-type amino acid transporter-1 overexpression and melphalan sensitivity in Barrett’s adenocarcinoma. Neoplasia. 2004;6:74–84.

    Article  PubMed  CAS  Google Scholar 

  89. Lin J, Lin L, Thomas DG, Greenson JK, Giordano TJ, Robinson GS, et al. Melanoma-associated antigens in esophageal adenocarcinoma: identification of novel MAGE-A10 splice variants. Clin Cancer Res. 2004;10:5708–16.

    Article  PubMed  CAS  Google Scholar 

  90. Brabender J, Lord RV, Wickramasinghe K, Metzger R, Schneider PM, Park JM, Holscher AH, DeMeester TR, Danenberg KD, Danenberg PV. Glutathione S-transferase-Pi expression is downregulated in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastrointest Surg. 2002;6:359–67.

    Article  PubMed  Google Scholar 

  91. Xu Y, Selaru F, Yin J, Zou TT, Shustova V, Mori Y, et al. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res. 2002;62:3493–7.

    PubMed  CAS  Google Scholar 

  92. Selaru FM, Zou T, Xu Y, Shustova V, Yin J, Mori Y, et al. Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene. 2002;21:475–8.

    Article  PubMed  CAS  Google Scholar 

  93. Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, et al. Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarinogenesis. Oncogene. 2006;25:3346–56.

    Article  PubMed  CAS  Google Scholar 

  94. Brabender J, Marjoram P, Salonga D, Metzger R, Schneider PM, Park JM, et al. A multigene expression panel for the molecular diagnosis of Barrett’s esophagus and Barrett’s adenocarcinoma of the esophagus. Oncogene. 2004;23:4780–8.

    Article  PubMed  CAS  Google Scholar 

  95. Morgan C, Alazawi W, Sirieix P, Freeman T, Coleman N, Fitzgerald R. In vitro acid exposure has a differential effect on apoptotic and proliferative pathways in a Barrett’s adenocarcinoma cell line. Am J Gastroenterol. 2004;218–24.

    Google Scholar 

  96. Cheng P, Gong J, Wang T, Jie C, Liu GS, Zhang R. Gene expression in Barrett’s esophagus and reflux esophagitis induced by gastroduodenoesophageal refulux in rats. World J Gastroeneterol. 2005;11(21);3277–80.

    Google Scholar 

  97. Cheng P, Gong J, Wang T, Jie C, Liu GS, Zhang R. Gene expression in rats with Barrett’s esophagus and esophageal adenocarcinoma induced by gastroduodenoesophageal reflux. World J Gastroenterol. 2005;11(33);5117–22.

    PubMed  CAS  Google Scholar 

  98. Helm J, Enkemann S, Coppola D, Barthel JS, Kelley ST, Yeatman TJ. Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin Cancer Res. 2005;11(7);2478–85.

    Article  PubMed  CAS  Google Scholar 

  99. Sui G, Zhou S, Wang J, Canto M, Eshleman ER, Montgomery EA, et al. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer. 2006;5:73.

    Article  PubMed  CAS  Google Scholar 

  100. Feber A, Xi L, Luketich J, Pennathur A, Landreneau RJ, Wu M, et al. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg. 2008;135:255–60.

    Article  PubMed  CAS  Google Scholar 

  101. Feldman A, Espina V, Petricoin EF, Liotta LA, Rosenblatt KP. Use of proteomic patterns to screen for gastrointestinal malignancies. Surgery. 2004;135(3);243–7.

    Article  PubMed  Google Scholar 

  102. Zhao J, Chang AC, Li C, Shedden KA, Thomas DG, Misek DE, Manoharan AP, Giordano TJ, Beer DG, Lubman DM. Comparative proteomics analysis of Barrett metaplasia and esophageal adenocarcinoma using two-dimensional liquid mass mapping. Mol Cell Proteomics. 2007;6:987–99.

    Article  PubMed  CAS  Google Scholar 

  103. Ostrowski J, Mikula M, Karezmarski J, Rubel T, Wyrwicz LS, Bragoszewski P, Gaj P, Dadlez M, Butruk E, Regula J. Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics. J Mol Med. 2007;85(7);733–43.

    Article  PubMed  CAS  Google Scholar 

  104. Peng D, Sheta EA, Powell SM, Moskaluk CA, Washington K, Goldknopf IL, et al. Alterations in Barrett’s-related adenocarcinomas: a proteomic approach. Int J Cancer. 2008;122(6);1303–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Coppola, D., Nasir, N.A., Turner, L. (2010). Genesis of Barrett’s Neoplasia: Current Concepts. In: Coppola, D. (eds) Mechanisms of Oncogenesis. Cancer Growth and Progression, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3725-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3725-1_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3724-4

  • Online ISBN: 978-90-481-3725-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics