Skip to main content

Airborne Remote Sensing at Millimeter Wave Frequencies

  • Chapter
  • First Online:
Radar Remote Sensing of Urban Areas

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 15))

Abstract

Advanced radar sensors are able to deliver highly resolved images of the earth surface with considerable information content, as polarimetric information, 3-D-features and robustness against changing environmental and operational conditions. This is possible also under adverse weather conditions, where electro-optical sensors are limited in their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almorox-Gonzlez P, Gonzlez-Partida JT, Burgos-Garca M, Dorta-Naranjo BP, de la Morena-Alvarez-Palencia C, Arche-Andradas L (2007) Portable high-resolution LFM-CW radar sensor in millimeter-waveband. In: Proceedings of SENSORCOMM, Valencia, Spain, pp 5–9, October 2007

    Google Scholar 

  • Berens P (1999) SAR with ultra-high resolution using synthetic bandwidth. In: Proceedings of IGARSS 1999, vol 3. Hamburg, Germany, 28 June–2 July 1999

    Google Scholar 

  • Boehmsdorff S, Essen H (1998) MEMPHIS an experimental platform for millimeterwave radar, DGON IRS 1998, München, pp 405–411

    Google Scholar 

  • Boehmsdorff S, Bers K, Brehm T, Essen H, Jäger K (2001) Detection of urban areas in multispectral data. In: IEEE/ISPRS Joint workshop on remote sensing and data fusion over urban areas

    Google Scholar 

  • Brenner AR, Ender JHG (2002) First experimental results achieved with the new very wideband SAR system Pamir. In: Proceedings of EUSAR 2002, pp 81–86

    Google Scholar 

  • Brooker GM, Hennessy RC, Lobsey CR, Bishop MV, Widzyk-Capehart E (2007) Seeing through dust and water vapor: millimeter wave radar sensors for mining applications. J Field Robot 24(7):527–557

    Article  Google Scholar 

  • Curlander JC, McDonough RN (1991) Synthetic aperture radar – systems and signal processing. Wiley, New York

    Google Scholar 

  • Dreuillet Ph, Cantalloube H, Colin E, Dubois-Fernandezx P, Dupuis X, Fromage P, Garestier F, Heuze D, Oriot H, Peron JL, Peyret J, Bonin G, du Plessis OR, Nouvel JF, Vaizan B (2006) The ONERA RAMSES SAR: latest significant results and future developments. In: Proceedings of 2006 IEEE Conference on Radar, p 7, 24–27 April 2006

    Google Scholar 

  • Edrich M (2004) Design overview and flight test results of the miniaturised SAR sensor MISAR. In: 1st European Radar Conference, EURAD 2004, pp 205–208

    Google Scholar 

  • Essen H, Baars EP (1986) Millimeter wave transmission through man-made obscurations in a battlefield environment. AGARD Multifunction Radar for Airborne Applications 1 p (SEE N87–18721 11–32)

    Google Scholar 

  • Essen H, Schimpf H, Wahlen A (2003) Improvement of the millimeterwave SAR MEMPHIS for very high resolution (in German). GFAN-FHR Technical Report, Werthhoven, May 2003

    Google Scholar 

  • Hägelen M, Briese G, Essen H, Bertuch T, Knott P, Tessmann A (2008) A millimeterwave landing aid approach for helicopters under brown-out conditions. In: IEEE RadarConference, Rome

    Google Scholar 

  • Henry JC (1991) The Lincoln laboratory 35 GHz airborne SAR imaging radar system. In: Telesystems Conference, 1991. Proceedings, vol 1, pp 353–358, 26–27 March 1991

    Google Scholar 

  • Keel BM, Saffold JA, Walbridge MR, Chadwick J (1998) Non-linear stepped chirp waveforms with sub-pulse processing for range sidelobe suppression. In: Proceedings of SPIE, vol 3395. Orlando, pp 87–98

    Google Scholar 

  • Kendra JR, Sarabandi K, Ulaby FT (1995) Experimental studies of dense media scattering. In: Antennas and propagation society international symposium, 1995. AP-S Digest 4(18–23 June 1995):1712–1715

    Google Scholar 

  • Koch DB, Tranter WH (1990) Processing considerations for hybrid waveforms utilizing complementary phase coding and linear frequency stepping. In: IEEE Int’l Radar Conference, pp 606–611, May 1990

    Google Scholar 

  • Kulpa KS, Misiurewicz J (2006) Stretch processing for long integration time passive covert radar. In: International Conference on Radar, Shanghai, 16–19 October 2006

    Google Scholar 

  • Levanon N (December 2002) Stepped-frequency pulse-train radar signal. IEE Proc Radar Sonar Navig 149:297–309

    Article  Google Scholar 

  • Magnard C, Meier E, Ruegg M, Brehm T, Essen H (2007) High resolution millimeter wave SAR interferometry. In: Proceedings of GARSS 2007, Barcelona, pp 5061–5064, 23–28 July 2007

    Google Scholar 

  • Maron DE (1990) Frequency-jumpedburst waveforms with stretch processing. In: IEEE 1990 International Radar Conference, Arlington, VA, pp 274–279, 7–10 May 1990

    Google Scholar 

  • Marshall JS, Palmer WM (1948) The distribution of raindrops with size. J Meteorol 5:165–166

    Google Scholar 

  • Morsdorf F, Kötz B, Meier E, Itten KI, Allgöwer B (15 September 2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104(1):50–61

    Article  Google Scholar 

  • Nüßler D, Essen H, von Wahl N, Zimmermann R, Rötzel S, Willms I (2007) Millimeter wave propagation through dust. In: Symposium Digest, SPIE Conference on Remote Sensing, Cardiff

    Google Scholar 

  • Rangwala M, Wang F, Sarabandi K (2007) Study of millimeter-wave radar for helicopter assisted landing. In: IEEE Proceedings of Geoscience and Remote Sensing, Barcelona

    Google Scholar 

  • Schimpf H, Essen H, Boehmsdorff S, Brehm T (2002) MEMPHIS – a fully polarimetric experimental radar. In: IGARSS, Toronto, CA, CD; FR08_853, June 2002

    Google Scholar 

  • Schimpf H, Wahlen A, Essen H (2004) High range resolution by means of synthetic bandwidth generated by frequency stepped chirps. Electron Lett 39(18):1714–1716

    Google Scholar 

  • Skolnik M (1980) Introduction to RadarSystems. McGraw-Hill, New York, p 581

    Google Scholar 

  • TopoSys Topographische Systemdaten GmbH,Obere Stegwiesen 26, 88400 Biberach an der Riß (Germany)

    Google Scholar 

  • Ulaby FT, Elachi CH (1990) Radar polarimetry for geoscience applications. Artech House, Norwood, MA

    Google Scholar 

  • Weiβ-Wrana K, Jessen W, Kohnle A, Clement D, Höhn DH (January 1995) Atmospheric transmittance measurements of Nd:YAG, iodine and CO2 laser radiation over 8.6 km, and statistical analysis of extinction coefficients. Infrared Phys Technol 36(1):513–528. In: Proceedings of the sixth international conference on infrared physics

    Article  Google Scholar 

  • Wikner D (2008) Millimeter-wave propagation measurement through a dust tunnel. Technical Report ARL-TR-4399, Adelphi, 6 August 2008

    Google Scholar 

  • William JC (1970) Stretch: a time-transformation technique. In: IEEE AES-7, 1970, pp 269–278

    Google Scholar 

  • Zhou L, Xing M, Sun H (2006) Synthetic bandwidth method integrated with characteristics of SAR. In: International Conference on Radar, Shanghai, pp 1–4, 16–19 October 2006

    Google Scholar 

Download references

Acknowledgements

The author would like to thank all contributors from FGAN-FHR, Department MHS, namely, Hartmut Schimpf, Thorsten Brehm and Manfred Hägelen. Thank is also due to the former colleague Stephan Boehmsdorff, who is now with the German Procurement Office BWB. Special thank is due to the colleagues of Zurich University, namely Erich Meier, Maurice Ruegg and Christophe Magnard, as well as the technology center of the Swiss Federal Department of Defence (armasuisse) and especially Peter Wellig for the wide support and cooperation. Part of the work was done under contract with the German Procurement Office BWB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Essen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Essen, H. (2010). Airborne Remote Sensing at Millimeter Wave Frequencies. In: Soergel, U. (eds) Radar Remote Sensing of Urban Areas. Remote Sensing and Digital Image Processing, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3751-0_11

Download citation

Publish with us

Policies and ethics