Skip to main content

Abstract

Piezoresistance is commonly used in micro-electro-mechanical systems for transducing force, pressure and acceleration. Silicon piezoresistors can be fabricated using ion implantation, diffusion or epitaxy and are widely used for their low cost and electronic readout. However, the design of piezoresistive cantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions and performance. Here we discuss the equations and design principles for piezoresistive cantilevers, and present results from cantilevers and systems that we have developed for probing, mechanics studies and sensing, especially for low stiffness or large bandwidth applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Hansen, A. Boisen, Noise in piezoresistive atomic force microscopy, Nanotechnology 10, 51 (1999)

    Article  Google Scholar 

  2. J. Harley, T. Kenny, 1/f noise considerations for the design and process optimization ofpiezoresistive cantilevers, Microelectromechanical Systems (2000)

    Google Scholar 

  3. X. Yu, J. Thaysen, O. Hansen, A. Boisen, Optimization of sensitivity and noise in piezoresistive cantilevers, Journal of Applied Physics (2002)

    Google Scholar 

  4. A. Merlos, J. Santander, M. Alvarez, F. Campabadal, Optimized technology for the fabrication of piezoresistive pressure sensors, Journal Of Micromechanics And Microengineering 10, 204 (2000)

    Article  CAS  Google Scholar 

  5. B. Bae, B. Flachsbart, K. Park, M. Shannon, Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio, Journal Of Micromechanics And Microengineering 14, 1597 (2004)

    Article  Google Scholar 

  6. C. Pramanik, H. Saha, U. Gangopadhyay, Design optimization of a high performance silicon mems piezoresistive pressure sensor for biomedical applications, Journal Of Micromechanics And Microengineering 16, 2060 (2006)

    Article  CAS  Google Scholar 

  7. Z. Wang, Y. Xu, Design and optimization of an ultra-sensitive piezoresistive accelerometer for continuous respiratory sound monitoring, Sensor Letters 5, 450 (2007)

    Article  Google Scholar 

  8. G. Villanueva, J. Plaza, J. Montserrat, F. Perezmurano, J. Bausells, Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces, Microelectronic Engineering p. 4 (2008)

    Google Scholar 

  9. S.J. Park, M.B. Goodman, B.L. Pruitt, Analysis of nematode mechanics by piezoresistive displacement clamp, Proceedings of the National Academy of Sciences 104(44), 17376 (2007)

    Article  CAS  Google Scholar 

  10. G. Binnig, C. Quate, C. Gerber, Atomic force microscope, Physical Review Letters (1986)

    Google Scholar 

  11. F. Goericke, W. King, Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors, Sensors Journal (2008)

    Google Scholar 

  12. M. Tortonese, R. Barrett, C. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Applied Physics Letters (1993)

    Google Scholar 

  13. S.C. Minne, J.D. Adams, G. Yaralioglu, S.R. Manalis, A. Atalar, C.F. Quate, Centimeter scale atomic force microscope imaging and lithography, Applied Physics Letters (1998)

    Google Scholar 

  14. R. Ried, H. Mamin, B. Terris, L. Fan, D. Rugar, 5 mhz, 2 n/m piezoresistive cantilevers with incisive tips, Solid State Sensors and Actuators (1997)

    Google Scholar 

  15. C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, H. Baltes, Smart single-chip gas sensor microsystem, Nature 414(6861), 293 (2001)

    Article  CAS  Google Scholar 

  16. A.A. Barlian, W.T. Park, J.R. Mallon, A.J. Rastegar, B.L. Pruitt, Semiconductor piezoresistance for microsystems, Proceedings of the IEEE (2009)

    Google Scholar 

  17. J. Harley, T. Kenny, High-sensitivity piezoresistive cantilevers under 1000 å thick, Appl. Phys. Lett (1999)

    Google Scholar 

  18. J. Richter, J. Pedersen, M. Brandbyge, E.V. Thomsen, O. Hansen, Piezoresistance in p-type silicon revisited, Journal of Applied Physics 104(2), 023715 (2008)

    Article  Google Scholar 

  19. J.C. Doll, B.C. Petzold, P. Ghale, M.B. Goodman, B.L. Pruitt, High frequency force sensing with piezoresistive cantilevers, Proceedings of Transducers 2009 (in press) (2009)

    Google Scholar 

  20. M. Tortonese, Force sensors for scanning probe microcopy, Ph.D. dissertation, Dept. Appl. Phys., Stanford University (1993)

    Google Scholar 

  21. S.J. Park, A. Rastegar, T. Fung, A. Barlian, J. Mallon, B. Pruitt, Optimization of piezoresistive cantilever performance, Hilton Head 2008: A Solid-State Sensors, Actuators and Microsystems Workshop p. 3 (2008)

    Google Scholar 

  22. S.J. Park, J.C. Doll, B.L. Pruitt, Piezoresistive cantilever performance, part i: Analytical model for sensitivity (2009), (submitted)

    Google Scholar 

  23. S.J. Park, B. Petzold, M. Goodman, B. Pruitt, Piezoresistive cantilever-based force-clamp system for the study of mechanotransduction in c. elegans, Proceedings of MEMS 2009 pp. 188–191 (2009)

    Google Scholar 

  24. S.D. Senturia, Microsystem design (2000)

    Google Scholar 

  25. G. Masetti, M. Severi, S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped …, Electron Devices (1983)

    Google Scholar 

  26. J.R. Mallon, A.J. Rastegar, A.A. Barlian, M.T. Meyer, T.H. Fung, B.L. Pruitt, Low 1/f noise, full bridge, microcantilever with longitudinal and transverse piezoresistors, Applied Physics Letters 92, 3508 (2008)

    Article  Google Scholar 

  27. S.J. Park, J.C. Doll, A.L. Rastegar, B.L. Pruitt, Piezoresistive cantilever performance, part ii: Optimization (2009), (submitted)

    Google Scholar 

  28. J.C. Doll, S.J. Park, B.L. Pruitt, Design optimization of piezoresistive cantilevers for force sensing in air and water (2009), (submitted)

    Google Scholar 

  29. B.W. Chui, T.W. Kenny, H.J. Mamin, B.D. Terris, D. Rugar, Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever, Applied Physics Letters 72(11), 1388 (1998)

    Article  CAS  Google Scholar 

  30. A. Partridge, J. Reynolds, B. Chui, E. Chow, A. Fitzgerald, L. Zhang, N. Maluf, T. Kenny, A high-performance planar piezoresistive accelerometer, Microelectromechanical Systems, Journal of 9(1), 58 (2000)

    CAS  Google Scholar 

  31. A.A. Barlian, S.J. Park, V. Mukundan, B.L. Pruitt, Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors, Sensors and Actuators A: Physical 134(1), 77 (2007)

    Article  Google Scholar 

  32. A. Barlian, N. Harjee, V. Mukundan, T. Fung, S.J. Park, B. Pruitt, Sidewall epitaxial piezoresistor process for in-plane sensing applications, Micro Electro Mechanical Systems (2008)

    Google Scholar 

  33. G. Hill, D. Soto, S. Lue, A. Peattie, R. Full, T. Kenny, Investigating the role of orientation angle on gecko setae adhesion using a dual-axis mems force sensor, Proceedings of Transducers 2007 pp. 2263–2266 (2007)

    Google Scholar 

  34. M. Topinka, B. LeRoy, S. Shaw, E. Heller, R. Westervelt, K. Maranowski, A. Gossard, Imaging coherent electron flow from a quantum point contact, Science 289(5488), 2323 (2000)

    Article  CAS  Google Scholar 

  35. G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, A. Majumdar, Origin of nanomechanical cantilever motion generated from biomolecular interactions, Proceedings of the National Academy of Sciences 98(4), 1560 (2001)

    Article  CAS  Google Scholar 

  36. R. Mukhopadhyay, M. Lorentzen, J. Kjems, F. Besenbacher, Nanomechanical sensing of dna sequences using piezoresistive cantilevers, Langmuir 21(18), 8400 (2005)

    Article  CAS  Google Scholar 

  37. Q.T. Trinh, G. Gerlach, J. Sorber, K.F. Arndt, Hydrogel-based piezoresistive ph sensors: Design, simulation and output characteristics, Sensors and Actuators B: Chemical 117(1), 17 (2006)

    Article  Google Scholar 

  38. F. Goericke, W. King, Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors, Sensors Journal, IEEE 8(8), 1404 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Fabrication work was performed in part at the Stanford Nanofabrication Facility (a member of the National Nanotechnology Infrastructure Network) supported by the NSF under Grant ECS-9731293, its lab members, and the industrial members of the Stanford Center for Integrated Systems. This work was supported by the National Institutes of Health under grant EB006745, and the National Science Foundation (NSF) under CAREER Award ECS-0449400, COINS NSF-NSEC ECS-0425914, CPN PHY-0425897, Sensors CTS-0428889 and NER ECCS-0708031. JCD was supported in part by a National Defense Science and Engineering Graduate (NDSEG) Fellowship and an NSF Graduate Research Fellowship. S-JP was supported by a Samsung fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth L. Pruitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Doll, J.C. et al. (2010). Force Sensing Optimization and Applications. In: Gusev, E., Garfunkel, E., Dideikin, A. (eds) Advanced Materials and Technologies for Micro/Nano-Devices, Sensors and Actuators. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3807-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3807-4_23

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3805-0

  • Online ISBN: 978-90-481-3807-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics