Skip to main content

Aerosols in the atmosphere

  • Conference paper
  • First Online:
Air Pollution Modeling and its Application XX

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An, W.J., Pathak, R.K., Lee, B.-H., Pandis, S.N., 2007. J. Aerosol. Sci., 38:305-314.

    Article  CAS  Google Scholar 

  • Donahue, N.M., Robinson, A.L., Stanier, C.O., Pandis, S.N., 2006. Environ. Sci. Technol., 40:2635–2643.

    Article  CAS  Google Scholar 

  • Fraser, M.P., Cass, G.R., Simoneit, B.R.T., Rasmussen, R.A., 1997. Environ. Sci. Technol., 31:2356–2367.

    Article  CAS  Google Scholar 

  • Fraser, M.P., Cass, G.R., Simoneit, B.R.T., Rasmussen, R.A., 1998. Environ. Sci. Technol., 32:1760–1770.

    Article  CAS  Google Scholar 

  • Grieshop, A., Donahue, N.M., Robinson, A.L., 2007. Geophys. Res. Lett., 34, L14810, doi: 10. 1029/2007GL029987.

    Article  Google Scholar 

  • Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1991. Environ. Sci. Technol., 25:1311–1325.

    Article  CAS  Google Scholar 

  • Kroll, J.H., and Seinfeld, J.H., 2008. Atmos. Environ., 42, 3593–3624.

    Article  CAS  Google Scholar 

  • Lipsky, E.M., Robinson, A.L., 2006. Environ. Sci. Technol., 40:155–162.

    Article  CAS  Google Scholar 

  • Pankow, J.F., 1994. Atmos. Environ., 28:185.

    Article  CAS  Google Scholar 

  • Robinson, A.L., Donahue, N.M., Rogge, W.F., 2006. J. Geophys. Res., 111.

    Google Scholar 

  • Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pierce, J.R., Pandis, S.N., 2007. Science, 315:1259–1262.

    Article  CAS  Google Scholar 

  • Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 1999. Environ. Sci. Technol., 33:1578–1587.

    Article  CAS  Google Scholar 

  • Seinfeld, J.H., Pandis, S.N., 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edition, J. Wiley, New York.

    Google Scholar 

  • Shrivastava, M., Lane, T.E., Donahue, N.M., Pandis, S.N., Robinson, A.L., 2008. J. Geophys. Res., 113, D18301, doi:10.1029/2007JD009735.

    Article  Google Scholar 

  • Shrivastava, M.K., Lipsky, E.M., Stanier, C.O., and Robinson, A.L., 2006. Environ. Sci. Technol., 40:2671–2677.

    Article  CAS  Google Scholar 

References

  • Elguindi, N., X. Bi, F. Giorgi, B. Nagarajan, J. Pal, F. Solmon, S. Rauscher, A. Zakey, 2006: RegCM Version 3.1 User’s Guide. PWCG Abdus Salam ICTP.

    Google Scholar 

  • ENVIRON Corp., 2006: CAMx Users’ Guide, version 4.40

    Google Scholar 

  • Gery, M.W., G.Z. Whitten, J.P. Killus, and M.C. Dodge. 1989: A Photochemical Kinetics Mechanism for Urban and Regional Scale Computer Modeling. J. Geophys. Res., 94, 925–956.

    Article  Google Scholar 

  • Giorgi, F., X. Bi, Y. Qian, 2002: Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study. J. Geophys. Res., 107, 4439, doi:10.1029/2001JD001066.

    Article  Google Scholar 

  • Giorgi, F., Y. Huang, K. Nishizawa and C. Fu, 1999: A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. Journal of Geophysical Research, 104, 6403–6423.

    Article  CAS  Google Scholar 

  • Guenther, A.B., Zimmerman, P.R., Harley, P.C., Monson, R.K., and Fall, R., 1993: Isoprene and monoterpene rate variability: model evaluations and sensitivity analyses, J. Geophys. Res., 98, No. D7, 12609–12617.

    Article  Google Scholar 

  • Guenther, A., Zimmerman, P., and Wildermuth, M., 1994: Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmospheric Environment, 28, 1197–1210.

    Article  CAS  Google Scholar 

  • Katragkou, E., P. Zanis, I. Tegoulias, D. Melas, 2009: Tropospheric ozone in regional climate-air quality simulations over Europe: Future climate and sensitivity analysis. Proceedings 30th NATO/SPS International Technical Meeting on Air Pollution Modelling and its Application.

    Google Scholar 

  • Krüger B. C., E. Katragkou, I. Tegoulias, P. Zanis, D. Melas, E. Coppola, S. Rauscher, P. Huszar and T. Halenka, 2008: Regional decadal photochemical model calculations for Europe concerning ozone levels in a changing climate, Quarterly J. of the Hungarian Meteorol. Service, Idojaras, 112, 3–4, 285–300.

    Google Scholar 

  • Pal, J. S., F. Giorgi, X. Bi, N. Elguindi, F. Solmon, X. Gao, S. A. Rauscher, R. Francisco, A. Zakey, J. Winter, M. Ashfaq, F. S. Syed, J. L. Bell, N. S. Diffenbaugh, J. Karmacharya, A. Konaré, D. Martinez, R. P. da Rocha, L. C. Sloan, and A. L. Steiner, 2007: Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteorol. Soc., 88, 9, 1395–1409.

    Article  Google Scholar 

References

  • Fast J.D. et al. (2006): Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res., 111, D21305, doi:10.1029/2005JD006721.

    Article  Google Scholar 

  • Fehsenfeld F.C. et al. (2007): International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe – Overview of the 2004 summer field study, J. Geophys. Res., 111, D23S01, doi:10.1029/2006JD007829.

    Article  Google Scholar 

  • Frost, G.J., et al. (2006): Effects of Changing Power Plant Emissions on Ozone in the Eastern United States, J. Geophys. Res., Vol. 111, D12306, doi:10.1029/2005JD006354.

    Article  Google Scholar 

  • Gong W. et al. (2006): Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmos. Res., 82, 248–275.

    Article  CAS  Google Scholar 

  • Grell G.A. et al. (2005): Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957-6975, doi:10.1016/j.atmosenv.2005.04.027.

    Article  CAS  Google Scholar 

  • Hayden, K.L. et al. (2008): Cloud processing of nitrate, J. Geophys. Res., 113, D18201, doi:10.1029/2007JD009732.

    Article  Google Scholar 

  • Lafore J., et al. (1998): The meso-nh atmospheric simulation system, part i, Adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109.

    Google Scholar 

  • McKeen S., et al. (2007): Evaluation of several real-time PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res., 112, D10S20, doi:10.1029/2006JD007608.

    Article  Google Scholar 

  • Morrison H. et al. (2009): Seventh WMO International Cloud Modeling Workshop, to appear in BAMS.

    Google Scholar 

  • Smyth S.C., et al. (2009): A comparative performance evaluation of the AURAMS and CMAQ air quality modelling systems. Atmos. Environ., 43, 1059–1070.

    Article  CAS  Google Scholar 

  • Tulet P., et al. (2003): Description of the Mesoscale Nonhydrostatic Chemistry model and application to a transboundary pollution episode between northern France and southern England, J. Geophys. Res., 108 (D1), 4021, doi:10.1029/2000JD000301.

    Article  Google Scholar 

  • Tulet, P., et al. (2006): Orilam-soa: A computationally efficient model for predicting secondary organic aerosols in 3d atmospheric models, J. Geophys. Res., 111, doi:10.1029/2006JD 007152.

    Article  Google Scholar 

  • Zhang J. et al. (2007): Evaluation of modeled cloud properties against aircraft observations for air quality applications, J. Geophys. Res., 112, D10S16, doi:10.1029/2006JD007596.

    Article  Google Scholar 

References

  • Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., Nakajima, T. (2002). Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements, J. Atmos. Sci., 59, 461–483.

    Article  Google Scholar 

  • Davidson, P. M., Seaman, N., Schere, K., Wayland, R. A., Hayes, J. L., Carey, K. F. (2004). National air quality forecasting capability: First steps toward implementation. Preprints, Sixth Conf. on Atmos. Chem., Ameri. Met. Soc., Seattle, WA, 12–16 Jan. 2004, Paper J2.10.

    Google Scholar 

  • Hess, M., Koepke, P., Schult, I. (1998). Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteor. Soc., 79, 831–844.

    Article  Google Scholar 

  • Moorthi, S., Pan, H.-L., Caplan, P. (2001). Changes to the 2001 NCEP Operational MRF/AVN Global Analysis/Forecast System, NOAA Technical Bulletin No. 484, 14 pp, Available at NOAA/NWS/NCEP, Camp Springs, MD.

    Google Scholar 

  • Wu, W.-S., Purser, R. J., Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogen.

    Google Scholar 

References

  • Astitha M, Kallos G, Katsafados P, Mavromatidis E (2007) Heterogeneous chemical processes and their role on particulate matter formation in the Mediterranean Region. Proceedings of the 29th NATO/CCMS ITM, Aveiro, Portugal, pp 503–513. ISBN 978-1-4020-8451-5.

    Google Scholar 

  • Astitha M, and G, Kallos (2008) Gas-phase and aerosol chemistry interactions in South Europe and the Mediterranean Region, Env. Fluid Mech., DOI: 10.1007/s10652-008-9110-7.

    Google Scholar 

  • Claquin T, M Schulz, YJ Balkanski (1999) Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res., 104 (D18):22243–22256.

    Article  CAS  Google Scholar 

  • Environ (2006) User’s Guide to CAMx v4.31, prepared by ENVIRON Inter. Corp., Novato, CA.

    Google Scholar 

  • Grassian V (2002) Chemical reactions of nitrogen oxides on the surface of oxide, carbonate, soot, and mineral dust particles: Implications for the chemical balance of the troposphere, J. Phys. 25 Chem. A, 106(6), 860–877.

    Article  CAS  Google Scholar 

  • Visschedijk AJH and HAC Denier van der Gon (2005) Gridded European anthropogenic emission data for NOx, SO2, NMVOC, NH3, CO, PM10, PM2.5 and CH4 for the year 2000, TNO B&O-A Rapport 2005/106, 2nd version Nov 2005.

    Google Scholar 

  • Zender CS, H Bian, D Newman (2003) Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res.-Atmos., 108, D14.

    Google Scholar 

References

  • Goudie, A.S.: Dust Storms: Dust storms: Recent developments, J. Environ. Manage., 90, 89–94 (2009)

    Article  Google Scholar 

  • Goudie, A.S., Middleton, N.J.: The changing frequency of dust storms through time, Climatic Change, 20, 197–225 (1992)

    Article  Google Scholar 

  • Herman, J.R., Bhartia, P.K., Torres, O., Hsu, C., Seftor, C., Celarier, E.: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102, 16911–16922 (1997)

    Article  CAS  Google Scholar 

  • Lisac, I.: A contribution to the knowledge of occurrence of dusty rain in Yugoslavia (in Croatian), Hidrografski godišnjak, 113–128 (1973)

    Google Scholar 

  • Löye-Pilot, M.D., Martin, J.M., Morelli, J.: Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean, Nature, 321, 427–428 (1986)

    Article  Google Scholar 

  • Middleton, N.J., Goudie, A.S.: Saharan Dust: sources and trajectories, Trans. Inst. Br. Geogr., 26, 165–181 (2001)

    Article  Google Scholar 

  • Špoler Čanić, K., Vidič, S., Klaić, Z.B.: Precipitation chemistry in Croatia during the period 1981–2006, J. Environ. Monit., 11, 839–851 (2009)

    Article  Google Scholar 

References

  • Amato P, Demeer F, Melaouhi A et al. (2007) A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms. Atmos. Chem. Phys. 7: 4159–4169.

    Article  CAS  Google Scholar 

  • Bauer H, Schueller E, Weinke G et al. (2008) Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos. Environ. 42(22): 5542–5549.

    Article  CAS  Google Scholar 

  • Deguillaume L, Leriche M, Monod A et al. (2004) The role of transition metal ions on HOx radicals in clouds: a numerical evaluation of its impact on multiphase chemistry. Atmos. Chem. Phys. 4: 95–110.

    Article  CAS  Google Scholar 

  • Deguillaume L, Leriche M, Desboeufs K et al. (2005a) Transition Metals in Atmospheric Liquid Phases: Sources, Reactivity, and Sensitive Parameters. Chem. Rev. 105: 3388–3431.

    Article  CAS  Google Scholar 

  • Deguillaume L, Leriche M, Chaumerliac N (2005b) Impact of radical versus non radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere 60-5: 718–724.

    Article  Google Scholar 

  • Deguillaume L, Leriche M, Amato P et al. (2008) Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 5: 1073–1084.

    Article  CAS  Google Scholar 

  • Herrmann H, Tilgner A, Barzaghi P et al. (2005) Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 39(23-24): 4351–4363.

    Article  CAS  Google Scholar 

  • Leriche M, Voisin D, Chaumerliac N et al. (2000) A model for tropospheric multiphase chemistry: application to one cloudy event during the CIME experiment. Atmos. Environ. 34-(29-30): 5015–5036.

    Article  CAS  Google Scholar 

  • Leriche M, Chaumerliac N, Monod A (2001) Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the Puy de Dôme mountain (France). Atmos. Environ. 35-32: 5411–5423.

    Article  Google Scholar 

  • Leriche M, Deguillaume L, and Chaumerliac N (2003) Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime. J. Geophys. Res. 108-D14 : 4433.

    Article  Google Scholar 

  • Leriche M, Curier RL, Deguillaume L et al. (2007) Numerical quantification of sources and phase partitioning of chemical species in cloud: Application to wintertime anthropogenic air masses at the Puy de Dôme station. J. Atmos. Chem. 57-3: 281–297.

    Article  Google Scholar 

  • Möhler O, DeMott PJ, Vali G et al. (2007) Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences 4: 1059–1071.

    Article  Google Scholar 

  • Schwartz S (1986) Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. Chemistry of Multiphase Atmospheric Systems, NATO ASI Ser., vol. G6, Springer-Verlag, New York.

    Google Scholar 

References

  • Directive 96/61/EC of the Council of 24 September 1996 concerning integrated pollution prevention and control.

    Google Scholar 

  • Aceña, B., I. Palomino, F. Martín and M. Palacios, 2002. Application of the MELPUFF model to air quality assessment in the industrial area of Huelva (Spain). Int. J. of Environment and Pollution, Vol. 18, No. 2, pp. 171–180.

    Article  Google Scholar 

  • F. Martín, M. Pujadas, B. Artiñano, F. Gómez-Moreno, I. Palomino, N. Moreno, A. Alastuey, X. Querol, J. Basora, J.A. Luaces, A. Guerra, Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours. Atmospheric Environment (2007), doi:10.1016/j.atmosenv.2006.12.003.

    Google Scholar 

References

  • Constantinescu EM, Sandu A (2007) Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33:239–278

    Article  Google Scholar 

  • Hinneburg D, Renner E, Wolke R (2009) Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony. Env. Sci. Pollut Res. 16:25–35

    Article  CAS  Google Scholar 

  • Knoth O, Wolke R (1998) An explicit-implicit numerical approach for atmospheric chemistry-transport modeling. Atmos. Env. 32:1785–1797

    Article  CAS  Google Scholar 

  • Osher S, Sanders R (1983) Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comput. 41:321–336

    Article  Google Scholar 

  • Schlegel M, Knoth O, Arnold M, Wolke R (2009). Multirate Runge-Kutta schemes for advection equarions. J. Comput. Appl. Math. 226:345–357

    Article  Google Scholar 

  • Vignati E., J. Wilson J, Stier P (2004) M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res. 109, D22202, doi: 10.1029/2003 JD004485.

    Article  Google Scholar 

  • Wolke R, Hellmuth O, Knoth O, Schröder W, Heinrich B, Renner E (2004) The chemistry-transport modeling system LM-MUSCAT: Description and CityDelta applications. In:Air Pollution Modeling and its Applicaton XVI, 427–439. Kluwer Academic/Plenum Publisher

    Google Scholar 

  • Wolke R,. Knoth O (2000) Implicit-explicit Runge-Kutta methods applied to atmospheric chemistry-transport modelling. Environmental Modelling and Software, 15:711–719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Miranda, A.I., Douglas, S. (2010). Aerosols in the atmosphere. In: Steyn, D., Rao, S. (eds) Air Pollution Modeling and its Application XX. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3812-8_5

Download citation

Publish with us

Policies and ethics