Skip to main content

Mextram

  • Chapter
Compact Modeling

Abstract

We present the Mextram model, an industrial world standard compact model for bipolar transistors, showing the identity, philosophy and capabilities of the model. Mextram has been developed to capture all terminal characteristics of bipolar transistors that are relevant to industrial electronic circuit design of any Si or SiGe bipolar transistor, under all relevant practical circumstances. History, basic structure and features of the model are discussed, including simulation of heating effects, noise, geometrical scaling and statistical analysis. The relevance of the refined topology of its equivalent circuit, to simulation of advanced ac-characteristics of modern high-speed Si and SiGe transistors is extensively demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TechAmerica, formed by the merger of AeA (formerly the American Electronics Association), the Cyber Security Industry Alliance (CSIA), the Information Technology Association of America (ITAA) and the Government Electronics & Information Technology Association (GEIA), offers leading federal market research and standards development programs to the high-tech industry at large: www.geia.org/index.asp?bid=597.

  2. 2.

    For the most recent model descriptions, source code, and documentation, see the web-site http://mextram.ewi.tudelft.nl.

  3. 3.

    This is also apparent from the extensive literature that is devoted to the physics of the epilayer: see e.g. references [1, 2, 4, 7, 9, 13, 14, 20, 23, 30, 36, 46, 51, 53].

  4. 4.

    Again we focus on npn transistors; for pnp transistors the Gummel number would be formulated in terms of electron concentrations.

  5. 5.

    In the notation used here, the functions K j are associated with nodes: K 1 is associated with node C 1 of the equivalent circuit, Fig. 7.1. In much of the Mextram literature and documentation, the value of the function K 1 is notated as K W (and K 2 is denoted as K 0).

  6. 6.

    In the notation of expression (7.21), the voltage \(V_{B_{2}C_{2^{*}}}\) appears in the expression for \(K_{2^{*}}\). In much of the Mextram literature and documentation, this voltage \(V_{B_{2}C_{2^{*}}}\) is notated as \(V^{*}_{B_{2}C_{2}}\).

References

  1. Beale, J.R.A., Slatter, J.A.G.: Equivalent circuit of a transistor with a lightly doped collector operating in saturation. Solid-State Electron. 11, 241–252 (1968)

    Article  Google Scholar 

  2. Berkner, J.: Kompaktmodelle für Bipolartransistoren. Praxis der Modellierung, Messung und Parameterbestimmung—SGP, VBIC, HICUM und MEXTRAM (Compact Models for Bipolar Transistors. Practice of Modelling, Measurement and Parameter Extraction—SGP, VBIC, HICUM und MEXTRAM). Expert, Renningen (2002) (In German)

    Google Scholar 

  3. Bonani, F., Ghione, G.: Noise in Semiconductor Devices. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  4. Bowler, D.L., Lindholm, F.A.: High current regimes in transistor collector regions. IEEE Trans. Electron. Devices ED-20, 257–263 (1973)

    Article  Google Scholar 

  5. Buckingham, M.J.: Noise in Electronic Devices and Systems. Ellis Horwood, Chichester (1983)

    Google Scholar 

  6. Chu, G.Y.: Unilateralization of junction transistor amplifiers at high frequencies. Proc. IRE 43(8), 1001–1006 (1955)

    Article  Google Scholar 

  7. de Graaff, H.C.: Collector models for bipolar transistors. Solid-State Electron. 16, 587–600 (1973)

    Article  Google Scholar 

  8. de Graaff, H.C.: Electrical behaviour of lightly doped collectors in bipolar transistors. PhD thesis, Eindhoven University of Technology (1975)

    Google Scholar 

  9. de Graaff, H.C., Klaassen, F.M.: Compact Transistor Modelling for Circuit Design. Springer, Wien (1990)

    Book  MATH  Google Scholar 

  10. de Graaff, H.C., Klaassen, F.M.: Compact Transistor Modelling for Circuit Design. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  11. de Graaff, H.C., Kloosterman, W.J.: Mextram a new bipolar transistor model. Report 6038, Philips Natl. Lab. (1985)

    Google Scholar 

  12. de Graaff, H.C., Kloosterman, W.J.: New formulation of the current and charge relations in bipolar transistor modeling for CACD purposes. IEEE Trans. Electron. Devices ED-32, 2415 (1985)

    Article  Google Scholar 

  13. de Graaff, H.C., Kloosterman, W.J.: Modeling of the collector epilayer of a bipolar transistor in the Mextram model. IEEE Trans. Electron. Devices ED-42, 274–282 (1995)

    Article  Google Scholar 

  14. de Graaff, H.C., van der Wal, R.J.: Measurement of the onset of quasi-saturation in bipolar transistors. Solid-State Electron. 17, 1187–1192 (1974)

    Article  Google Scholar 

  15. de Graaff, H.C., Kloosterman, W.J., Geelen, J.A.M., Koolen, M.C.A.M.: Experience with the new compact Mextram model for bipolar transistors. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 246–249 (1989)

    Google Scholar 

  16. de Vreede, L.C.N., de Graaff, H.C., Mouthaan, K., de Kok, M., Tauritz, J.L., Baets, R.G.F.: Advanced modeling of distortion effects in bipolar transistors using the Mextram model. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 48–51 (1994)

    Google Scholar 

  17. de Vreede, L.C.N., de Graaff, H.C., Mouthaan, K., de Kok, M., Tauritz, J.L., Baets, R.G.F.: Advanced modeling of distortion effects in bipolar transistors using the Mextram model. IEEE J. Solid-State Circuits 31, 114–121 (1996)

    Article  Google Scholar 

  18. de Vreede, L.C.N., de Graaff, H.C., Tauritz, J.L., Baets, R.G.F.: Extension of the collector charge description for compact bipolar epilayer models. IEEE Trans. Electron. Devices ED-42, 277–285 (1998)

    Article  Google Scholar 

  19. Deixler, P., Rodriguez, A., De Boer, W., Sun, H., Colclaser, R., Bower, D., Bell, N., Yao, A., Brock, R., Bouttement, Y., Hurkx, G., Tiemeijer, L., Paasschens, J., Huizing, H., Hartskeerl, D., Agrarwal, P., Magnee, P., Aksen, E., Slotboom, J.: QUBiC4X: An f t /f max =130/140 GHz SiGe:C-BiCMOS manufacturing technology with elite passives for emerging microwave applications. In: Proc. BCTM, pp. 233–236. IEEE, New York (2004)

    Google Scholar 

  20. Getreu, I.E.: Modeling the Bipolar Transistor. Elsevier, Amsterdam (1978)

    Google Scholar 

  21. Gummel, H.K.: A charge control relation for bipolar transistors. Bell Sys. Tech. J. 115–120 (1970)

    Google Scholar 

  22. Gupta, M.: Power gain in feedback amplifiers, a classic revisited. IEEE Trans. Microw. Theory Tech. 40(5), 864–879 (1992)

    Article  Google Scholar 

  23. Hassan, M.M.S.: Modelling of lightly doped collector of a bipolar transistor operating in quasi-saturation region. Int. J. Electron. 86, 1–14 (1999)

    Article  Google Scholar 

  24. Hong, G.B., Fossum, J.G., Ugajin, M.: A physical SiGe-base HBT model for circuit simulation and design. In: IEDM Tech. Digest, pp. 557–560 (1992)

    Google Scholar 

  25. http://en.wikipedia.org/wiki/Compact_Model_Council

  26. http://mextram.ewi.tudelft.nl

  27. Hurkx, G.A.M.: Bipolar and Bipolar-MOS Integration. Elsevier, Amsterdam (1994). Chap. 3

    Google Scholar 

  28. Hurkx, G.A.M.: The relevance of f T and f max for the speed of a bipolar CE amplifier stage. IEEE Trans. Electron. Devices 44, 775–781 (1997)

    Article  Google Scholar 

  29. Hurkx, G.A.M., Agarwal, P., Dekker, R., van der Heijden, E., Veenstra, H.: RF figures-of-merit for process optimization. IEEE Trans. Electron. Devices 51(12), 2121–2128 (2004)

    Article  Google Scholar 

  30. Jeong, H., Fossum, J.G.: A charge-based large-signal bipolar transistor model for device and circuit simulation. IEEE Trans. Electron. Devices ED-36, 124–131 (1989)

    Article  Google Scholar 

  31. Joseph, A.J., Cressler, J.D., Richey, D.M., Jaeger, R.C., Harame, D.L.: Neutral base recombination and its influence on the temperature dependence of early voltage and current gain-early voltage product in UHV/CVD SiGe heterojunction bipolar transistors. IEEE Trans. Electron. Devices 44, 404–413 (1997)

    Article  Google Scholar 

  32. Kloosterman, W.J., de Graaff, H.C.: Avalanche multiplication in a compact bipolar transistor model for circuit simulation. IEEE Trans. Electron. Devices ED-36, 1376–1380 (1989)

    Article  Google Scholar 

  33. Kloosterman, W.J., Geelen, J.A.M., Klaassen, D.B.M.: Efficient parameter extraction for the Mextram model. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 70–73 (1995)

    Google Scholar 

  34. Kloosterman, W.J., Paasschens, J.C.J., Havens, R.J.: A comprehensive bipolar avalanche multiplication compact model for circuit simulation. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 172–175 (2000)

    Google Scholar 

  35. Koolen, M.C.A.M., Aerts, J.C.J.: The influence of non-ideal base current on 1/f noise behaviour of bipolar transistors. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 232–235 (1990)

    Google Scholar 

  36. Kull, G.M., Nagel, L.W., Lee, S., Lloyd, P., Prendergast, E.J., Dirks, H.: A unified circuit model for bipolar transistors including quasi-saturation effects. IEEE Trans. Electron. Devices ED-32(6), 1103–1113 (1985)

    Article  Google Scholar 

  37. Mason, S.J.: Power gain in feedback amplifier. Trans. IRE 1(2), 20–25 (1954)

    Google Scholar 

  38. Milovanović, V., Van der Toorn, R.: Rf small signal avalanche characterization and repercussions on bipolar transistor circuit design. In: The IEEE Region 8 EUROCON. The International Conference on Computer as a Tool, IEEE, Saint Petersburg, Russia (2009)

    Google Scholar 

  39. Milovanović, V., van der Toorn, R., Humphries, P., Vidal, D., Vafanejad, A.: Compact model of Zener tunneling current in bipolar transistors featuring a smooth transition to zero forward bias current. In: Proc. of the Bipolar Circuits and Technology Meeting (2009)

    Google Scholar 

  40. Paasschens, J.C.J.: Compact modeling of the noise of a bipolar transistor under DC and AC current crowding conditions. IEEE Trans. Electron. Devices 51, 1483–1495 (2004)

    Article  Google Scholar 

  41. Paasschens, J.C.J., de Kort, R.: Modelling the excess noise due to avalanche multiplication in (heterojunction) bipolar transistors. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 108–111 (2004)

    Google Scholar 

  42. Paasschens, J.C.J., Kloosterman, W.J.: The Mextram bipolar transistor model, level 504. Unclassified Report NL-UR 2000/811, Philips Natl. Lab. (2000). See footnote 2

    Google Scholar 

  43. Paasschens, J.C.J., Kloosterman, W.J., Havens, R.J., de Graaff, H.C.: Improved modeling of output conductance and cut-off frequency of bipolar transistors. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 62–65 (2000)

    Google Scholar 

  44. Paasschens, J.C.J., Kloosterman, W.J., Havens, R.J.: Modelling two SiGe HBT specific features for circuit simulation. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 38–41 (2001)

    Google Scholar 

  45. Paasschens, J.C.J., Kloosterman, W.J., Havens, R.J.: Parameter extraction for the bipolar transistor model Mextram, level 504. Unclassified Report NL-UR 2001/801, Philips Natl. Lab. (2001). See footnote 2

    Google Scholar 

  46. Paasschens, J.C.J., Kloosterman, W.J., Havens, R.J., de Graaff, H.C.: Improved compact modeling of output conductance and cutoff frequency of bipolar transistors. IEEE J. Solid-State Circuits 36, 1390–1398 (2001)

    Article  Google Scholar 

  47. Paasschens, J.C.J., Havens, R.J., Tiemeijer, L.F.: Modelling the correlation in the high-frequency noise of (heterojunction) bipolar transistors using charge-partitioning. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 221–224 (2003)

    Google Scholar 

  48. Paasschens, J.C.J., Harmsma, S., van der Toorn, R.: Dependence of thermal resistance on ambient and actual temperature. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 96–99 (2004)

    Google Scholar 

  49. Pals, J.A., de Graaff, H.C.: On the behaviour of the base-collector junction of a transistor at high collector current densities. Philips Res. Rep. 24, 53–69 (1969)

    Google Scholar 

  50. Reisch, M.: High-Frequency Bipolar Transistors. Advanced Microelectronics, vol. 11. Springer, Berlin (2003). Chap. B.2

    Chapter  Google Scholar 

  51. Rey, G., Dupuy, F., Bailbe, J.P.: A unified approach to the base widening mechanism in bipolar transistors. Solid-State Electron. 18, 863–866 (1975)

    Article  Google Scholar 

  52. Rollett, J.: Stability and power-gain invariants of linear twoports. In: IRE Trans. on Circuit Theory, pp. 29–32 (1962)

    Google Scholar 

  53. Schröter, M., Lee, T.Y.: Physics-based minority charge and transit time modeling for bipolar transistors. IEEE Trans. Electron. Devices ED-46, 288–300 (1999)

    Article  Google Scholar 

  54. Van der Heijden, M.P., De Vreede, L.C., Burghartz, J.N.: On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and iip3 match. IEEE J. Solid-State Circuits 39(10), 1727–1736 (2004)

    Article  Google Scholar 

  55. van der Toorn, R., Dohmen, J.J., Hubert, O.: Distribution of the collector resistance of planar bipolar transistors: Impact on small signal characteristics and compact modeling. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 184–187 (2007)

    Google Scholar 

  56. van der Ziel, A.: Noise. Sources, Characterization, Measurement. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  57. van der Ziel, A.: Noise in Solid-State Devices and Circuits. Wiley-Interscience, New York (1986)

    Google Scholar 

  58. Versleijen, M.P.J.G.: Distributed high frequency effects in bipolar transistors. In: Proc. of the Bipolar Circuits and Technology Meeting, pp. 85–88 (1991)

    Google Scholar 

  59. Wu, H.: A scalable mextram model for advanced bipolar circuit design. Ph.D. thesis, Delft University of Technology (2007)

    Google Scholar 

  60. Wu, H., Mijalkovic, S., Burghartz, J.: Parameters extraction of a scalable Mextram model for high-speed SiGe HBTs. In: Proc. BCTM, pp. 140–143. IEEE, New York (2004)

    Google Scholar 

  61. Wu, H., Mijalkovic, S., Burghartz, J.: A referenced geometry based configuration scalable mextram model for bipolar transistors. In: Proc. IEEE Int. Behavioral Modeling and Simulation Workshop, pp. 50–55. IEEE, New York (2006)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the IEEE Intellectual Property Rights Office for granted permission to re-use figures of IEEE copyrighted publications and to Daniel P. Vidal (Delft University) for reading the penultimate version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. van der Toorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van der Toorn, R., Paasschens, J.C.J., Kloosterman, W.J., de Graaff, H.C. (2010). Mextram. In: Gildenblat, G. (eds) Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8614-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8614-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8613-6

  • Online ISBN: 978-90-481-8614-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics