Skip to main content

Metazoan Complexity

  • Chapter
  • First Online:
Introduction to Marine Genomics

Part of the book series: Advances in Marine Genomics ((AMGE,volume 1))

  • 1459 Accesses

Abstract

Evolution is often regarded as a process leading from simple ancestors to more complex descendants, a generalized view that has also impacted on different concepts of evolution. However, the study of new marine model systems, and the inclusion of new levels of analysis, challenge this paradigm, as they reveal that levels of complexity can diverge from the apparent organizational complexity of individual species. In this chapter, we analyze molecular genetic progress from different animal taxa, and how they help to determine the molecular changes associated with major evolutionary transitions, such as the transition to multicellularity or the origin of germ layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M, King N (2008) The premetazoan ancestry of cadherins. Science 319: 946–948

    Article  CAS  PubMed  Google Scholar 

  • Aburomia R et al (2003) Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. J Struct Funct Genomics 3: 45–52

    Article  CAS  PubMed  Google Scholar 

  • Ackermann C (2002) Markierung der Zellinien im Embryo von Platynereis. In: Fachbereich biologie, ed. Mainz: Johannes Gutenberg-Universität

    Google Scholar 

  • Adamska M et al (2007a) Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLOS One 2: e1031

    Google Scholar 

  • Adamska M et al (2007b) The evolutionary origin of hedgehog proteins. Curr Biol 17: R836–R837

    Article  CAS  PubMed  Google Scholar 

  • Adell T et al (2003) Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon. Dev Genes Evol 213: 421–434

    Article  CAS  PubMed  Google Scholar 

  • Adell T, Müller WEG. (2004) Isolation and characterization of five Fox (Forkhead) genes from the sponge Suberites domuncula. Gene 334: 35–46

    Article  CAS  PubMed  Google Scholar 

  • Adell T, Müller WEG. (2005) Expression pattern of the Brachyury and Tbx2 homologues from the sponge Suberites domuncula. Biol Cell 97: 641–650

    Article  CAS  PubMed  Google Scholar 

  • Aguinaldo AM et al (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489–493

    Article  CAS  PubMed  Google Scholar 

  • Amerongen HM, Peteya DJ (1980) Ultrastructural study of two kinds of muscle in sea anemones: the existence of fast and slow muscles. J Morphol 166: 145–154

    Article  Google Scholar 

  • Arendt D (2004) Comparative aspects of gastrulation. In: Stern C (ed) Gastrulation, edn. Cold Spring Harbor Laboratory Press, Cold SPring Harbor, New York

    Google Scholar 

  • Arendt D (2005) Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci 124: 185–197

    CAS  PubMed  Google Scholar 

  • Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9: 868–882

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Nübler-Jung K (1997) Dorsal or ventral: similarities in fate maps and gastrulation patterns in annelids, arthropods and chordates. Mech Dev 61: 7–21

    Article  CAS  PubMed  Google Scholar 

  • Bell G (1997) Size and complexity among multicellular organisms. Biol J Linnean Soc 60: 345–363

    Article  Google Scholar 

  • Bijlsma MF et al (2004) Hedgehog: an unusual signal transducer. Bioessays 26: 387–394

    Article  CAS  PubMed  Google Scholar 

  • Bonner JT. (1988) The evolution of complexity. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Borchiellini C et al (2004) Molecular phylogeny of demospongiae: implications for classification and scenarios of character evolution. Mol Phylogenet Evol 32: 823–837

    Article  CAS  PubMed  Google Scholar 

  • Borchiellini C et al (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14: 171–179

    Article  Google Scholar 

  • Boue S et al (2003) Alternative splicing and evolution. Bioessays 25: 1031–1034

    Article  CAS  PubMed  Google Scholar 

  • Brett D et al (2002) Alternative splicing and genome complexity. Nat Genet 30: 29–30

    Article  CAS  PubMed  Google Scholar 

  • Brites D et al (2008) The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 25: 1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Brooke NM et al (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392: 920–922

    Article  CAS  PubMed  Google Scholar 

  • Brusca RC, Brusca GJ. (2003) Invertebrates. Sinauer Associates. Sunderland, Massachusetts. http://www.sinauer.com/detail.php?id=0973

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. San Francisco: Freeman

    Google Scholar 

  • Burton PM (2007) Inisghts from diploblasts; the evolution of mesoderm and muscle. J Exp Zool (Mol Dev Evol) 308B: 1–10

    Article  Google Scholar 

  • Bütschli O. (1883–1887) Klassen und Ordnungen des Thier-Reichs. Winter, C. F., Leipzig

    Google Scholar 

  • Calarco JA et al (2007) Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev 21: 2963–2975

    Article  CAS  PubMed  Google Scholar 

  • Callaerts P et al (1997) PAX-6 in development and evolution. Ann Rev Neurosci 20: 483–532

    Article  CAS  PubMed  Google Scholar 

  • Cañestro C et al (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8: 932–942

    Article  PubMed  CAS  Google Scholar 

  • Carr M et al (2008) Molecular phylogeny of choanoflagellates, the sister group to Metazoa. PNAS 105: 16641–16646

    Article  CAS  PubMed  Google Scholar 

  • Chimpanzee Sequencing and Analysis C (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87

    Article  CAS  Google Scholar 

  • Chourrout D et al (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442: 684–687

    Article  CAS  PubMed  Google Scholar 

  • Clark H (1866) Note on the infusoria flagellate and the spongiae ciliatae. Am J Sci 1: 113–114

    Google Scholar 

  • Clark H (1868) On the Spongiae ciliatae as Infusoria flagellata, or observations on the structure, animality and relationship of Leucosolenia botryoides Bowerbank. Ann Mag Nat Hist 4: 133–142, 188–215, 250–264

    Google Scholar 

  • Claverie JM (2001) Gene number. What if there are only 30,000 human genes? Science 291: 1255–1257

    Article  CAS  PubMed  Google Scholar 

  • Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci USA 95: 15458–15463

    Article  CAS  PubMed  Google Scholar 

  • Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15: 418–432

    Article  Google Scholar 

  • da Silva FB et al (2007) Phylogenetic position of Placozoa based on large subunit (LSU) and small subunit (SSU) rRNA genes. Genet Mol Biol 30: 127–132

    Google Scholar 

  • de Jong DM et al (2006) Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a ‘radiate’ animal, the anthozoan cnidarian Acropora millepora. Dev Biol 298: 632–643

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Sasai Y (1996) A common groundplan for dorsoventral patterning in Bilateria. Nature 380: 37–40

    Article  PubMed  Google Scholar 

  • Dellaporta SL et al (2006) Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci USA 103: 8751–8756

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F et al (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439: 965–968

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F et al (2008) Additional molecular support for the new chordate phylogeny. Genesis 46: 592–604

    Article  PubMed  Google Scholar 

  • Denes AS et al (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in Bilateria. Cell 129: 277–288

    Article  CAS  PubMed  Google Scholar 

  • Derelle R et al (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev 9: 212–219

    Article  CAS  PubMed  Google Scholar 

  • Dominguez M et al (2004) Growth and specification of the eye are controlled independently by Eyegone and Eyeless in Drosophila melanogaster. Nat Genet 36: 31–39

    Article  CAS  PubMed  Google Scholar 

  • Ereskovsky AV, Dondua AK (2006) The problem of germ layers in sponges (Porifera) and some issues concerning early metazoan evolution. Zoologischer Anzeiger 245: 65–76

    Article  Google Scholar 

  • Finnerty JR, Martindale MQ (1999) Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Evol Dev 1: 16–23

    CAS  Google Scholar 

  • Finnerty JR et al (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304: 1335–1337

    Article  CAS  PubMed  Google Scholar 

  • Fioroni P (1992) Allgemeine und vergleichende Embryologie. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Fritzenwanker JH et al (2004) Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275: 389–402

    Article  CAS  PubMed  Google Scholar 

  • Galle S et al (2005) The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle. Int J Dev Biol 49: 961–967

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6: 881–892

    Article  PubMed  Google Scholar 

  • Garcia-Fernàndez J, Bentio-Gutiérrez E (2009) It’s a long way from amphioxus: descendants of the earliest chordate. Bioessays 31: 665–675

    Article  PubMed  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus hox gene-cluster. Nature 370: 563–566

    Article  PubMed  Google Scholar 

  • Gerberding M et al (2002) Cell lineage analysis of the amphipod crustacean Parhyale hawaiensis reveals an early restriction of cell fates. Development 129: 5789–5801

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2005) Genome size evolution in animals. In: Gregory TR (ed) The evolution of the genome, 1st edn. Elsevier, San Diego

    Google Scholar 

  • Grell KG (1971a) Embryonalentwicklung bei Trichoplax adherens F.E. Schulze. Naturwiss 58: 507

    Article  Google Scholar 

  • Grell KG (1971b) Trichoplax adherens: F.E. Schulze und die Entstehung der Metazoen. Naturwiss Rundschau 24: 160–161

    Google Scholar 

  • Grell KG (1972) Eibildung und Furchung von Trichoplax adherens F.E. Schulze (Placozoa). Z Morph Tiere 73: 297–314

    Article  Google Scholar 

  • Grell KG, Ruthman A (1991) Placozoa, Porifera, Cnidaria and Ctenophora. In Harrisson FW, Westfall JA (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York

    Google Scholar 

  • Grimson A et al (2008) Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455: 1193–1197

    Article  CAS  PubMed  Google Scholar 

  • Grunz H (2004) The vertebrate organizer. Springer, Berlin Heidelberg

    Google Scholar 

  • Haeckel E (1874) Die Gastraea-Theorie, die phylogenetische Classification des Thierreiches und die Homologie der Keimblätter. Jena Z. Naturwiss 8: 1–55

    Google Scholar 

  • Haeckel E (1903) Anthropogenie oder Entwickelungsgeschichte des Menschen. Keimes- und Stammes-Geschichte. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Haen KM et al (2007) Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution? Mol Biol Evol 24: 1518–1527

    Article  CAS  PubMed  Google Scholar 

  • Hahn MW, Wray GA (2002) The g-value paradox. Evol Dev 4: 73–75

    Article  PubMed  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Ann Rev Ecol Evol Sys 35: 229–256

    Article  Google Scholar 

  • Halanych KM et al (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Halder G et al (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267: 1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Hattori D et al (2008) Dscam-mediated cell recognition regulates neural circuit formation. Annu Rev Cell Dev Biol 24: 597–620

    Article  CAS  PubMed  Google Scholar 

  • Hayward DC et al (2002) Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc Natl Acad Sci USA 99: 8106–8111

    Article  CAS  PubMed  Google Scholar 

  • Heimberg AM et al (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105: 2946–2950

    Article  CAS  PubMed  Google Scholar 

  • Hibino T et al (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300: 349–365

    Article  CAS  PubMed  Google Scholar 

  • Hirose Y et al (2004) Single cell lineage and regionalization of cell populations during Medaka neurulation. Development 131: 2553–2563

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ (2000) Body-plan evolution in the Bilateria: early antero-posterior patterning and the deuterostome-protostome dichotomy. Curr Opin Genet Dev 10: 434–442

    Article  CAS  PubMed  Google Scholar 

  • Holland LZ et al (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18: 1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Hotta K et al (2008) Brachyury-downstream gene sets in a chordate, Ciona intestinalis: integrating notochord specification, morphogenesis and chordate evolution. Evol Dev 10: 37–51

    Article  CAS  PubMed  Google Scholar 

  • Howard-Ashby M et al (2006) High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution. Dev Biol 300: 27–34

    CAS  Google Scholar 

  • Imai KS et al (2006) Regulatory blueprint for a chordate embryo. Science 312: 1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Imai KS et al (2002) Early embryonic expression of FGF4/6/9 gene and its role in the induction of mesenchyme and notochord in Ciona savignyi embryos. Development 129: 1729–1738

    CAS  PubMed  Google Scholar 

  • Jager M et al (2005) Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 39: 468–477

    Article  CAS  Google Scholar 

  • Jaillon O et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431: 946–957

    Article  PubMed  Google Scholar 

  • Jakob W et al (2004) The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214: 170–175

    Article  CAS  PubMed  Google Scholar 

  • Jekely G, Arendt D (2007) Cellular resolution expression profiling using confocal detection of NBT/BCIP precipitate by reflection microscopy. Biotechniques 42: 751–755

    Article  CAS  PubMed  Google Scholar 

  • Kamm K et al (2006) Axial patterning and diversification in the cnidaria predate the Hox system. Curr Biol 16: 920–926

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294: 1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Keller R et al (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355: 897–922

    Article  CAS  PubMed  Google Scholar 

  • Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42: 222–241

    Article  CAS  PubMed  Google Scholar 

  • King N et al (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301: 361–363

    Article  CAS  PubMed  Google Scholar 

  • King N et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451: 783–788

    Article  CAS  PubMed  Google Scholar 

  • Kortschak RD et al (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13: 2190–2195

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z (2005) Pax genes in eye development and evolution. Curr Opin Genet Dev 15: 430–438

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z et al (2003) Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5: 773–785

    Article  CAS  PubMed  Google Scholar 

  • Kraus Y et al (2007) The blastoporal organiser of a sea anemone. Curr Biol 17: R874–R876

    Google Scholar 

  • Kusserow A et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433: 156–160

    Article  CAS  PubMed  Google Scholar 

  • Lang BF et al (2002) The closest unicellular relatives of animals. Curr Biol 12: 1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Larroux C et al (2007) The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 17: 706–710

    Article  CAS  PubMed  Google Scholar 

  • Larroux C et al (2006) Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev 8: 150–173

    Article  CAS  PubMed  Google Scholar 

  • Larroux C et al (2008) Genesis and expansions of metazoan transcription factor classes. Mol Biol Evol 25: 980–996

    Article  CAS  PubMed  Google Scholar 

  • Leadbeater BSC (1983) Life-history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida). J Mar Biol Assoc UK 63: 135–160

    Article  Google Scholar 

  • Lee PN et al (2007) Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 310: 169–186

    Article  CAS  PubMed  Google Scholar 

  • Lemaire P (2006) Developmental biology. How many ways to make a chordate? Science 312: 1145–1156

    CAS  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424: 147–151

    Article  CAS  PubMed  Google Scholar 

  • Leys SP (2004) Gastrulation in sponges. In Stern CD (ed) Gastrulation. Cold Spring Harbor Laboratory Press, Cold Sping Harbor, New York

    Google Scholar 

  • Leys SP, Degnan BM (2001) Cytological basis of photoresponsive behavior in a sponge larva. Biol Bull 201: 323–338

    Article  CAS  PubMed  Google Scholar 

  • Leys SP, Ereskovsky AV (2006) Embryogenesis and larval differentiation in sponges. Can J Zool 84: 262–287

    Article  Google Scholar 

  • Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418: 236–243

    Article  CAS  PubMed  Google Scholar 

  • Manning G et al (2008) The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. PNAS 105: 9674–9679

    Article  CAS  PubMed  Google Scholar 

  • Manuel M, Le Parco Y (2000) Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 17: 97–107

    Article  CAS  PubMed  Google Scholar 

  • Manuel M et al (2004) Comparative analysis of Brachyury T-domains, with the characterization of two new sponge sequences, from a hexactinellid and a calcisponge. Gene 340: 291–301

    Article  CAS  PubMed  Google Scholar 

  • Marlow HQ et al (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69: 235–254

    Article  CAS  PubMed  Google Scholar 

  • Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6: 917–927

    Article  CAS  PubMed  Google Scholar 

  • Martindale MQ et al (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131: 2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Martinelli C, Spring J (2003) Distinct expression patterns of the two T-box homologues Brachyury and Tbx2/3 in the placozoan Trichoplax adhaerens. Dev Genes Evol 213: 492–499

    Article  PubMed  Google Scholar 

  • Martinelli C, Spring J (2004) Expression pattern of the homeobox gene Not in the basal metazoan Trichoplax adhaerens. Gene Expr Patterns 4: 443–447

    Article  CAS  PubMed  Google Scholar 

  • Masuda-Nakagawa LM et al (2000) The HOX-like gene Cnox2-Pc is expressed at the anterior region in all life cycle stages of the jellyfish Podocoryne carnea. Dev Genes Evol 210: 151–156

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210: 1526–1547

    Article  PubMed  Google Scholar 

  • Matus DQ et al (2008) The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 313: 501–518

    Article  CAS  PubMed  Google Scholar 

  • Matus DQ et al (2006a) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci USA 103: 11195–11200

    Article  CAS  PubMed  Google Scholar 

  • Matus DQ et al (2006b) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16: 499–505

    Article  CAS  PubMed  Google Scholar 

  • Matus DQ et al (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217: 137–148

    Article  CAS  PubMed  Google Scholar 

  • Mazza ME et al (2007) Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zoolog B Mol Dev Evol 308: 494–506

    Article  CAS  Google Scholar 

  • McGinnis W et al (1984) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: 403–408

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W and Krumlauf R. (1992) Homeobox genes and axial patterning. Cell 68: 283–302

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Ball EE (2005) Animal evolution: the enigmatic phylum placozoa revisited. Curr Biol 15: R26–R28

    Google Scholar 

  • Miller DJ, and Ball EE (2008) Cryptic complexity captured: the Nematostella genome reveals its secrets. Trends Genet 24: 1–4

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ et al (2005) Cnidarians and ancestral genetic complexity in the animal kingdom. Trends Genet 21: 536–539

    Article  CAS  PubMed  Google Scholar 

  • Monteiro AS et al (2006) A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev 8: 174–182

    Article  CAS  PubMed  Google Scholar 

  • Moroz LL et al (2006) Neuronal transcriptome of aplysia: neuronal compartments and circuitry. Cell 127: 1453–1467

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Bürglin TR (2007) Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol 65: 137–153

    Article  CAS  PubMed  Google Scholar 

  • Nedelcu AM, Tan C (2007) Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 217: 801–806

    Article  PubMed  Google Scholar 

  • Nielsen C (2001) Animal Evolution. Interrelationships of the Living Phyla. Oxford University press, Oxford

    Google Scholar 

  • Nielsen C (2004) Trochophora Larvae: Cell-Lineages, Ciliary Bands, and Body Regions. 1. Annelida and Mollusca. J Exp Zool (Mol Dev Evol) 302B: 35–68

    Article  Google Scholar 

  • Nilsson DE et al (2005) Advanced optics in a jellyfish eye. Nature 435: 201–205

    Article  CAS  PubMed  Google Scholar 

  • Pang K et al (2004) The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa). Dev Genes Evol 214: 134–138

    Article  CAS  PubMed  Google Scholar 

  • Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci USA 102: 7888–7893

    Article  CAS  PubMed  Google Scholar 

  • Pedersen RA (1971) DNA content, ribosomal gene multiplicity, and cell size in fish. J. Exp. Zool. 177: 65–78

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA et al (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444: 499–502

    Article  CAS  PubMed  Google Scholar 

  • Peterson KJ, Sperling EA (2007) Poriferan ANTP genes: primitively simple or secondarily reduced? Evol Dev 9: 405–408

    Article  PubMed  Google Scholar 

  • Philippe H et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19: 706–712

    Article  CAS  PubMed  Google Scholar 

  • Piatigorsky J, Kozmik Z (2004) Cubozoan jellyfish: an Evo/Devo model for eyes and other sensory systems. Int J Dev Biol 48: 719–729

    Article  PubMed  Google Scholar 

  • Pincus D et al (2008) Evolution of the phospho-tyrosine signaling machinery in premetazoan lineages. PNAS 105: 9680–9684

    Article  CAS  PubMed  Google Scholar 

  • Prpic NM, Telford MJ (2008) Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage. Dev Genes Evol 218: 333–339

    Article  CAS  PubMed  Google Scholar 

  • Prud’homme B et al (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci USA 104: 8605–8612

    Article  PubMed  CAS  Google Scholar 

  • Putnam NH et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453: 1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317: 86–94

    Article  CAS  PubMed  Google Scholar 

  • Raible F et al (2006) Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol 300: 461–475

    Article  CAS  PubMed  Google Scholar 

  • Raible F et al (2005) Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 310: 1325–1326

    Article  CAS  PubMed  Google Scholar 

  • Rast JP et al (2006) Genomic insights into the immune system of the sea urchin. Science 314: 952–956

    Article  CAS  PubMed  Google Scholar 

  • Remane A (1950) Die Entstehung der Metamerie der Wirbellosen. Vh Dt Zool Ges Mainz: 16–23

    Google Scholar 

  • Rentzsch F et al (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Dev Biol 296: 375–387

    Article  CAS  PubMed  Google Scholar 

  • Rentzsch F et al (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 315:1761–1769

    Google Scholar 

  • Ryan JF et al (2006) The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 7: R64

    Google Scholar 

  • Ryan JF et al (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLOS One 2: e153

    Google Scholar 

  • Sakaraya O et al (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS One 2(6): e506

    Google Scholar 

  • Samanta MP et al (2006) The transcriptome of the sea urchin embryo. Science 314: 960–962

    Article  CAS  PubMed  Google Scholar 

  • Satou Y, Satoh N (2006) Gene regulatory networks for the development and evolution of the chordate heart. Genes Dev 20: 2634–2638

    Article  CAS  PubMed  Google Scholar 

  • Schierwater B et al (2008) The early ANTP gene repertoire: Insights from the placozoan genome. PLOS One 3: e2457

    Google Scholar 

  • Schmucker D et al (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671–684

    Article  CAS  PubMed  Google Scholar 

  • Schuchert P (1993) Trichoplax adhaerens (Phylum Placozoa) has cells that react with antibodies against the neuropetide RFamide. Acta Zoologica (Stockholm). 74: 115–117

    Article  Google Scholar 

  • Schuchert P et al (1993) Life stage specific expression of a myosin heavy chain in the hydrozoan Podocoryne carnea. Differentiation 54: 11–18

    CAS  PubMed  Google Scholar 

  • Sea Urchin Genome Sequencing C et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314: 941–952

    Article  Google Scholar 

  • Sedgwick A (1884) On the origin of metameric segmentation and some other morphological questions. Q J Microsc Sci 24: 43–82

    Google Scholar 

  • Segawa Y et al (2006) Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Proc Natl Acad Sci USA 103: 12021–12026

    Article  CAS  PubMed  Google Scholar 

  • Seipel K, Schmid V (2005) Evolution of striated muscle: Jellyfish and the origin of triploblasty. Dev Biol 282: 14–26

    Article  CAS  PubMed  Google Scholar 

  • Sempere LF et al (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zoolog B Mol Dev Evol 306: 575–588

    Article  CAS  Google Scholar 

  • Shalchian-Tabrizi K et al (2008) Multigene phylogeny of choanozoa and the origin of animals. PLOS One 3: e2098

    Google Scholar 

  • Shankland M, Seaver EC (2000) Evolution of the bilaterian body plan: what have we learned from annelids? Proc Natl Acad Sci USA 97: 4434–4437

    Article  CAS  PubMed  Google Scholar 

  • Shoguchi E et al (2008) Genome-wide network of regulatory genes for construction of a chordate embryo. Dev Biol 316: 498–509

    Article  CAS  PubMed  Google Scholar 

  • Short S, Holland LZ (2008) The evolution of alternative splicing in the Pax family: the view from the Basal chordate amphioxus. J Mol Evol 66: 605–620

    Article  CAS  PubMed  Google Scholar 

  • Siewing R (1985) Lehrbuch der Zoologie. Systematik. Gustav Fischer Verlag, Stuttgart, New York

    Google Scholar 

  • Signorovitch AY et al (2007) Comparative genomics of large mitochondria in placozoans. PLoS Genet 3: e13

    Google Scholar 

  • Signorovitch AY et al (2005) Molecular signatures for sex in the Placozoa. Proc Natl Acad Sci USA 102: 15518–15522

    Article  CAS  PubMed  Google Scholar 

  • Simionato E et al (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7: 33

    Article  PubMed  CAS  Google Scholar 

  • Skogh C et al (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 267: 1391–1405

    Article  CAS  Google Scholar 

  • Snell EA et al (2006) An unusual choanoflagellate protein released by Hedgehog autocatalytic processing. Proc R Soc B 273: 401–407

    Article  CAS  PubMed  Google Scholar 

  • Sperling EA, Peterson KJ. (2007) Poriferan paraphyly and its implication for precambrian paleobiology. In Vickers-Rich P, Komarower P (eds) The rise and fall of the ediacaran biota. Geological Society, London

    Google Scholar 

  • Spring J et al (2002) Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of bilateria. Dev Biol 244: 372–384

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454: 955–960

    Article  CAS  PubMed  Google Scholar 

  • St-Onge L et al (1997) Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 387: 406–409

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz PR et al (2007) Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation. Proc Natl Acad Sci USA 104: 2727–2732

    Google Scholar 

  • Stephenson TA (1928) The British Sea Anemones. Dulau & Co, London

    Google Scholar 

  • Stephenson TA (1935) The British Sea Anemones. Dulau & Co, London

    Google Scholar 

  • Stierwald M et al (2004) The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol 274: 70–81

    Article  CAS  PubMed  Google Scholar 

  • Suga H et al (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18: 51–55

    Article  CAS  PubMed  Google Scholar 

  • Syed T, Schierwater B (2002) Trichoplax adherens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52: 177–187

    Google Scholar 

  • Tassy O et al (2006) A quantitative approach to the study of cell shapes and interactions during early chordate embryogenesis. Curr Biol 16: 345–358

    Article  CAS  PubMed  Google Scholar 

  • Tautz D (2004) Segmentation. Dev Cell 7: 301–312

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: The evolution of new genes and old ideas. Ann Rev Genet 38: 615–643

    Article  CAS  PubMed  Google Scholar 

  • Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. BioEssays 23: 788–794

    Article  CAS  PubMed  Google Scholar 

  • Technau U et al (2005) Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21: 633–639

    Article  CAS  PubMed  Google Scholar 

  • Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47: 47

    Google Scholar 

  • Tessmar-Raible K et al (2005) Fluorescent two color whole-mount in situ hybridization in Platynereis dumerilii (Polychaeta, Annelida), an emerging marine molecular model for evolution and development. BioTechniques 39:460–464

    Google Scholar 

  • Valentine JW (2000) Two genomic paths to the evolution of complexity in bodyplans. Paleobiology 26: 513–519

    Article  Google Scholar 

  • Valentine JW et al (1994) Morphological complexity increase in metazoans. Paleobiology 20: 131–142

    Google Scholar 

  • Vogel C, Chothia C (2006) Protein family expansions and biological complexity. PLOS Comput Biol 2: e48

    Google Scholar 

  • Voigt O et al (2004) Placozoa – no longer a phylum of one. Curr Biol 14: R944–R945

    Google Scholar 

  • Wenderoth H (1986) Transepithelial cytophagy by Trichoplax adherens F.E. Schulze (Placozoa) feeding on yeast. Zeitschrift für Naturforschung. Section C, Biosciences 41: 343–347

    Google Scholar 

  • Woo K, Fraser S (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121: 2595–2609

    CAS  PubMed  Google Scholar 

  • Woolfe A et al (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3: e7

    Google Scholar 

  • Yanze N et al (2001) Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol 236: 89–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ferdinand Marlétaz and Benjamin Backfisch for critical reading of the manuscript, and Hanno Sandvik for help in locating the original lithograph reproduced in Fig. 5.1. Research in F.R.’s laboratory is supported by a start-up fund of the Max F. Perutz Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian Raible or Patrick R. H. Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Raible, F., Steinmetz, P.R.H. (2010). Metazoan Complexity. In: Cock, J., Tessmar-Raible, K., Boyen, C., Viard, F. (eds) Introduction to Marine Genomics. Advances in Marine Genomics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8639-6_5

Download citation

Publish with us

Policies and ethics