Skip to main content

Part of the book series: Environmental Pollution ((EPOL,volume 17))

Abstract

Human exposure to air pollutants is ubiquitous. Once a pollutant has been discharged into or has been formed in the air, exposure to this pollutant can hardly be avoided as people have to breathe continuously. Because people move, commute, and frequently change their positions, they can be exposed daily to various kinds and mixtures of gases and airborne particles. In addition to the diversity of the environments where exposure may occur, the many different activities and the potential number of chemicals present all pose a challenge in investigating the health risks posed by air pollutants. Not only do the daily activities and social behaviour of modern humans vary substantially. Air chemistry (species, ions, elements, mixtures), physics (temperature, pressure, radiation) and biology (fungal spores, viruses, bacteria, mites) all change in space and time as well. The air also changes dynamically in connection with differences in the meteorological, microclimatic, and other environmental characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adgate, J. L., Church, T. R., Ryan, A. D., Ramachandran, G., Frederickson, A. L., Stock, T. H., et al. (2004). Outdoor, indoor, and personal exposure to VOCs in children. Environmental Health Perspectives, 112(14), 1386–1392.

    Article  CAS  Google Scholar 

  • Adgate, J. L., Ramachandran, G., Pratt, G. C., Waller, L. A., & Sexton, K. (2002). Spatial and temporal variability in outdoor, indoor and personal PM2.5 exposure. Atmospheric Environment, 36, 3255–3265.

    Article  CAS  Google Scholar 

  • Adhikari, A., Martuzevicius, D., Reponen, T., Grinshpun, S. A., Cho, S.-H., Sivasubramani, S. K., et al. (2003). Performance of the button inhalable sampler for the measurement of outdoor aeroallergens. Atmospheric Environment, 37, 4723–4733.

    Article  CAS  Google Scholar 

  • Agranovski, I. E., Agranovski, V., Reponen, T., Willeke, K., & Grinshpun, S. A. (2002). Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmospheric Environment, 36, 889–898.

    Article  CAS  Google Scholar 

  • Aizenberg, V., Grinshpun, S. A., Willeke, K., Smith, J., & Baron, P. A. (2000). Performance characteristics of the button personal inhalable aerosol sample. American Industrial Hygiene Association Journal, 61(3), 398–404.

    Article  CAS  Google Scholar 

  • Albalak, R., Frisancho, A. R., & Keeler, G. J. (1999). Domestic biomass fuel combustion and chronic bronchitis in two rural Bolivian villages. Thorax, 54(11), 1004–1008.

    Article  CAS  Google Scholar 

  • Andresen, P. R., Ramachandran, G., Pai, P., & Maynard, A. (2005). Women´s personal and indoor exposures to PM2.5 in Mysore, India: Imact of domestic fuel usage. Atmospheric Environment, 39, 5500–5508.

    Article  CAS  Google Scholar 

  • Balakrishnan, K., Parikh, J., Sankar, S., Padmavathi, R., Srividya, K., Venugopal, V., et al. (2002). Daily average exposures to respirable particulate matter from combustion of biomass fuels in rural households of southern India. Environmental Health Perspectives, 110(11), 1069–1075.

    Article  Google Scholar 

  • Beeson, W. L., Abbey, D. E., & Knutsen, S. F. (1998). Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: Results from the ASHMOG study. Environmental Health Perspectives, 106(12), 813–822.

    Article  CAS  Google Scholar 

  • Bell, M. L., & Davis, D. L. (2001). Reassessment of the lethal London fog of 1952: novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental Health Perspectives, 109(Suppl. 3), 389–394.

    Article  CAS  Google Scholar 

  • Berlin, A., Yodaiken, R. E., & Henman, B. A. (1984). Assessment of toxic agents at the workplace. Roles of ambient and biological monitoring (684 pp.). The Hague: Martinus Nijhoff.

    Google Scholar 

  • Boudet, C., Zmirou, D., & Vestri, V. (2001). Can one use ambient air concentration data to estimate personal and population exposures to particles? An approach within the Ezuropean EXPOLIS study. Science of the Total Environment, 267, 141–150.

    Article  CAS  Google Scholar 

  • Branis, M. (2006). The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system. Atmospheric Environment, 40(2), 348–356.

    Article  CAS  Google Scholar 

  • Brauer, M. (1995). Assessment of indoor aerosols with an integrating nephelometer. Journal of Exposure Analysis & Environmental Epidemiology, 5, 45–56.

    CAS  Google Scholar 

  • Brauer, M., Hirtle, R. D., Hall, A. C., & Yip, T. R. (1999). Monitoring personal particle exposure with a particle counter. Journal of Exposure Analysis & Environmental Epidemiology, 9, 228–236.

    Article  CAS  Google Scholar 

  • Brouwer, D. H., Gijsbers, J. H. J., & Lurvink, M. W. M. (2004). Personal exposure to ultrafine particles in the workplace: Exploring sampling techniques and strategies. Annals of Occupational Hygiene, 48(5), 439–453.

    Article  CAS  Google Scholar 

  • Brown, R. H. (Ed.). (1993). The use of diffusive samplers for monitoring of ambient air (IUPAC report). Pure & Applied Chemistry, 65(8), 1859–1874.

    Article  CAS  Google Scholar 

  • Buckley, T. J., Waldman, J. M., Freeman, N. C. G., Marple, V. A., Turner, W. A., & Lioy, P. J. (1991). Calibration, intersampler comparison, and field application of a new PM-10 personal air-sampling impactor. Aerosol Science and Technology, 14, 380–387.

    Article  CAS  Google Scholar 

  • Chakrabarti, B., Fine, P. M., Delfino, R., & Sioutas, C. (2004). Performance evaluation of the active flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR – 1200) designed for continuous personal exposure measurements. Atmospheric Environment, 38, 3329–3340.

    Article  CAS  Google Scholar 

  • Chang, Li-Te, Koutrakis, P., Catalano, P. J., & Suh, H. H. (2000). Hourly personal exposures to fine particles and gaseous pollutants – results from Baltimore, Maryland. Journal of the Air & Waste Management Association, 50(7), 1223–1235.

    CAS  Google Scholar 

  • Chang, Li-Te, Suh, H. H., Wolfson, J. M., Misra, K., Allen, G. A., Catalano, P. J., et al. (2001). Laboratory and field evaluation of measurement methods for one-hour exposures to O3, PM2.5, and CO. Journal of the Air & Waste Management Association, 51(10), 1414–1422.

    CAS  Google Scholar 

  • Chapin, F. S., Jr. (1974). Human activity patterns in the city: Things people do in time and space (272 pp.). New York: Wiley Intersciences.

    Google Scholar 

  • Chen, B. T., Feather, G. A., Maynard, A., & Rao, C. Y. (2004). Development of a personal sampler for collecting fungal spores. Aerosol Science and Technology, 38, 926–937.

    Article  CAS  Google Scholar 

  • Chow, J. C., Engelbrecht, J. P., Freeman, N. C. G., Hashim, J. H., Jantunen, M., Michaud, J.-P., et al. (2002). Chapter one: Exposure measurement. Chemosphere, 49, 875–901.

    Google Scholar 

  • Cohen, M. A., & Cotey, M. R. (1997). The use of hand held pen computer for field data entry. Applied Occupational and Environmental Hygiene, 12, 792–795.

    Google Scholar 

  • Demokritou, P., Kavouras, I. G., Ferguson, S. T., & Koutrakis, P. (2001). Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurement of particulate and gaseous pollutants. Aerosol Science and Technology, 35, 741–752.

    Article  CAS  Google Scholar 

  • Dockery, D. W., & Pope, C. A., III. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15, 107–132.

    Article  CAS  Google Scholar 

  • Dockery, D. W., Pope, C. A., III, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329, 1753–1759.

    Article  CAS  Google Scholar 

  • Dockery, D. W., & Spengler, J. D. (1981). Personal exposure to respirable particulates and sulphates. Journal of the Air Pollution Control Association, 31, 153–159.

    CAS  Google Scholar 

  • Dor, F., Dab, W., Empereur-Bissonet, P., & Zmirou, D. (1999). Validity of biomarkers in environmental health studies: The case of PAHs and benzene. Critical Reviews in Toxicology, 29(2), 129–168.

    Article  CAS  Google Scholar 

  • Duan, N. (1982). Model for human exposure to air pollution. Environment International, 8, 305–309.

    Article  CAS  Google Scholar 

  • Freeman, N. C. G., Lioy, P. J., Pellizzari, E., Zelon, H., Thomas, K., Clayton, A., et al. (1999). Responses to the Region 5 NHEXAS time/activity diary. Journal of Exposure Analysis & Environmental Epidemiology, 9, 414–426.

    Article  CAS  Google Scholar 

  • Freeman, N. C. G., & Saenz de Tejada, S. (2002). Methods for collecting time-activity information related to exposure to combustion products. Chemosphere, 49, 979–992.

    Article  CAS  Google Scholar 

  • Gauvin, S., Reungoat, P., Cassadou, S., Déchenaux, J., Momas, I., Just, J., et al. (2002). Contribution of indoor and outdoor environments to PM2.5 personal exposure of children – VESTA study. Science of the Total Environment, 297, 175–181.

    Article  CAS  Google Scholar 

  • Georgiadis, P., Topinka, J., Stoikidou, M., Kaila, S., Gioka, M., Katsouyanni, K., et al. (2001). Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters. Carcinogenesis, 22(9), 1447–1457.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., & Lioy, P. J. (2006). From a theoretical framework of human exposure and dose assessment to computational system implementation: The Modeling Environment for Total Risk studies (MENTOR). Journal of Toxicology & Environmental Health – Part B, 9(6), 457–483.

    Article  CAS  Google Scholar 

  • Georgopoulos, P. G., Wallace, L. A., Roy, A., & Lioy, P. J. (1997). Integrated exposure and dose modelling and analytical system. 1. Formulation and testing of microenvironmental and pharmacokinetic components. Environmental Science and Technology, 31(1), 17–27.

    Article  CAS  Google Scholar 

  • Geyh, A. S., Roberts, P. T., Lurmann, F. W., Schoell, B. M., & Avol, E. L. (1999). Initial field evaluation of the Harvard active ozone sampler for personal ozone monitoring. Journal of Exposure Analysis & Environmental Epidemiology, 2, 143–149.

    Article  CAS  Google Scholar 

  • Gore, R. B., Curbishley, L., Truman, N., Hadley, E., Woodcock, A., Langley, S. J., et al. (2006). Intranasal air sampling in homes: relationships among reservoir allergen concentrations and asthma severity. Allergy & Clinical Immunology, 117(3), 649–655.

    Article  CAS  Google Scholar 

  • Gore, R. B., Hadi, E. A., Craven, M., Smillie, F. I., O’Meara, T. J., Tovey, E. R., et al. (2002). Personal exposure to house dust mite allergen in bed: Nasal air sampling and reservoir allergen levels. Clinical & Experimental Allergy, 32(6), 856–859.

    Article  CAS  Google Scholar 

  • Gorecki, T., & Namiesnik, J. (2002). Passive sampling. Trends in Analytical Chemistry, 21(4), 276–291.

    Article  CAS  Google Scholar 

  • Görner, P., Bemer, D., & Fabriés, J. F. (1995). Photometer measurements of polydisperse aerosols. Journal of Aersol Science, 8, 1281–1302.

    Article  Google Scholar 

  • Graham, J. A. H., Pavlicek, P. K., Sercombe, J. K., Xavier, M. L., & Tovey, E. R. (2000). The nasal air sampler: A device for sampling inhaled aeroallergens. Annals of Allergy, Asthma & Immunology, 84(6), 599–604.

    Article  CAS  Google Scholar 

  • Grandjean, P. (1995). Biomarkers in epidemiology. Clinical Chemistry, 41(12), 1800–1803.

    CAS  Google Scholar 

  • Groopman, J. D., & Kensler, T. W. (1999). The light at the end of the tunnel for chemical-specific biomarkers: Daylight or headlight? Carcinogenesis, 20, 1–11.

    Article  CAS  Google Scholar 

  • Hagenbjörk-Gustafsson, A., Lindahl, R., Levin, J.-O., & Karlsson, D. (2002). Validation of the Willems badge diffusive sampler for nitrogen dioxide determinations in occupational environments. Analyst, 127, 163–168.

    Article  CAS  Google Scholar 

  • Hansen, A. M., Wallin, H., Binderup, M. L., Dybdahl, M., Autrup, H., Loft, S., et al. (2004). Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutation Research, 557(1), 7–17.

    CAS  Google Scholar 

  • Harrison, R. M., Thornton, C. A., Lawrence, R. G., Mark, D., Kinerslay, R. P., & Ayers, J. G. (2002). Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups. Occupational and Environmental Medicine, 59, 671–679.

    Article  CAS  Google Scholar 

  • Herber, R. F. M., Duffus, J. H., Christensen, J. M., Olsen, E., Park, M. V. (2001). Risk assessment for occupational exposure to chemicals. Review of current methodology (IUPAC Technical Report). Pure and Applied Chemistry, 73(6), 993–1031.

    Article  CAS  Google Scholar 

  • Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology technologies enable predictive and preventive medicine. Science, 306(5696), 640–643.

    Article  CAS  Google Scholar 

  • Howard-Reed, C., Rea, A. W., Zufall, M. J., Burke, J. M., Williams, R. W., Suggs, J. C., et al. (2000). Use of a continuous nephelometer to measure personal exposure to particles during the US Environmental Protection Agency Baltimore and Fresno panel studies. Journal of the Air & Waste Management Association, 50, 1125–1132.

    CAS  Google Scholar 

  • Janssen, N. A. H., de Hartog, J. J., Hoek, G., & Brunekreef, B. (2000). Personal exposure to fine particulate matter in elderly subjects: relation between personal, indoor and outdoor concentrations. Journal of the Air & Waste Management Association, 50, 1133–1143.

    CAS  Google Scholar 

  • Janssen, N. A. H., Hoek, G., Harssema, H., & Brunekreef, B. (1999). Personal exposure to fine particles in children correlates closely with the ambient fine particles. Archives of Environmental Health, 54(2), 95–101.

    Article  CAS  Google Scholar 

  • Jantunen, M., Hanninen, O., Katsouyanni, K., Knoppel, H., Kuenzli, N., Lebret, E., et al. (1998). Air pollution exposure in European cities: The EXPOLIS study. Journal of Exposure Analysis & Environment Epidemiology, 8(4), 495–518.

    CAS  Google Scholar 

  • Jantunen, M., Hänninen, O., Koistinen, K., & Hashim, J. H. (2002). Fine PM measurements: personal and indoor monitoring. Chemosphere, 49, 993–1007.

    Article  CAS  Google Scholar 

  • Jenkins, R. A., & Counts, R. W. (1999). Personal exposure to environmental tobacco smoke: salivary cotinine, airborne nicotine, and nonsmoker misclassification. Journal of Exposure Analysis & Environment Epidemiology, 9, 352–363.

    Article  CAS  Google Scholar 

  • Jenkins, R. A., Ilgner, R. H., & Tomkins, B. A. (2004). Development and application of protocols for the determination of response of real-time particle monitors to common indoor aerosols. Journal of the Air & Waste Management Association, 54, 229–241.

    CAS  Google Scholar 

  • Jo, W.-K., & Pack, K.-W. (1999). Utilization of breath analysis for exposure estimates of benzene associated with active smoking. Environmental Research, 83, 180–187.

    Article  CAS  Google Scholar 

  • Jones, A. Y. M., Lam, P. K. W., & Dean, E. (2006). Respiratory health of bus drivers in Hong Kong. International Archives of Occupational and Environmental Health, 79, 414–418.

    Article  CAS  Google Scholar 

  • Katsouyani, K., Zmirou, D., Spix, C., Schwartz, J., Balducci, F., Medina, S., et al. (1997). Short term effect of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time-series data from the APHEA project. British Medical Journal, 314, 1658–1663.

    Google Scholar 

  • Kim, D., Sass-Kortsak, A., Purdham, J. T., Dales, R. E., & Brook, J. R. (2006). Association between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. Journal of Exposure Analysis & Environmental Epidemiology, 16, 172–183.

    Article  CAS  Google Scholar 

  • Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., et al. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis & Environmental Epidemiology, 11, 231–252.

    Article  CAS  Google Scholar 

  • Kousa, A., Oglesby, L., Koistinen, K., Künzli, N., & Jantunen, M. (2002). Exposure chain of urban air PM2.5 – associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmospheric Environment, 36, 3031–3039.

    Article  CAS  Google Scholar 

  • Kruppa, S. V. (1998). Passive sampling of ambient gaseous air pollutants: A review. In A. H. Legge & L. L. Jones (Eds.), Proceedings of the international speciality conference, engineering air issues for the 21 st century: the need for multidisciplinary management, VIP-78 (pp. 485–505). Pittsburgh, PA: Air and Waste Management Association.

    Google Scholar 

  • Kruppa, S. V., & Legge, A. H. (2000). Passive sampling of ambient, gaseous air pollutants: An assessment from an ecological perspective. Environmental Pollution, 107, 31–45.

    Article  Google Scholar 

  • Kwok, R. (2004). Use of 1) Sensors and 2) Radio Frequency ID (RFID) for the national children’s study (EPA 600/R-05/018, 85pp.). Final Report.

    Google Scholar 

  • Lanki, T., Alm, S., Ruuskanen, J., Janssen, N. A. H., Jantunen, M., & Pekkanen, J. (2002). Photometrically measured continuous personal PM22.5 exposure and correlation to a gravimetric method. Journal of Exposure Analysis & Environmental Epidemiology, 12, 172–178.

    Article  CAS  Google Scholar 

  • Leaderer, B. P. (1990). Assessing exposures to environmental tobacco smoke. Risk Analysis, 10, 19–26.

    Article  CAS  Google Scholar 

  • Leaderer, B. P., Lioy, P. J., & Spengler, J. D. (1993). Assessing exposures to inhaled complex mixtures. Environmental Health Perspectives, 101(Suppl. 4), 167–177.

    Article  CAS  Google Scholar 

  • Leaderer, B. P., Zagraniski, R. T., Berwick, M., & Stolwijk, J. A. (1986). Assessment of exposure to indoor air contaminants from combustion sources: methodology and application. American Journal of Epidemiology, 124, 275–289.

    CAS  Google Scholar 

  • Lioy, P. J. (1990). Assessing total human exposure to contaminants: A multidisciplinary approach. Environmental Science and Technology, 24(7), 938–945.

    Article  CAS  Google Scholar 

  • Lioy, P. J. (1993). Measurements of personal exposure to air pollution: Status and needs. In L. Newan (Ed.), Measurement challenges in atmospheric chemistry (Chapter 13, pp. 373–390). Advances in Chemistry Series 232. Washington, DC: American Chemical Society.

    Google Scholar 

  • Lioy, P. J., Waldman, J. M., Buckley, T., Butler, J., & Pietarinen, C. (1990). The personal, indoor and outdoor concentration of PM-10 measured in an industrial community during the winter. Atmosperic Environment, 24B, 57–66.

    Article  Google Scholar 

  • Liu, L.-J. S., Box, M., Kalman, D., Kaufman, J., Koenig, J., Larson, T., et al. (2003). Exposure assessment of particulate matter for susceptible populations in Seattle. Environmental Health Perspectives, 111(7), 909–918.

    Article  Google Scholar 

  • Liu, L.-J. S., Olson, M. P., Allen, G. A., Koutrakis, P., McDonell, W. F., & Gerrity, T. R. (1994). Evaluation of the Harvard ozone passive sampler on human subjects indoors. Environmental Science and Technology, 28(5), 915–923.

    Article  CAS  Google Scholar 

  • Liu, L.-J. S., Slaughter, J. C., & Larson, T. V. (2002). Comparison of light scattering devices and impactors for particulate measurements in indoor, outdoor, and personal environments. Environmental Science and Technology, 36, 2977–2986.

    Article  CAS  Google Scholar 

  • Logan, W. P. D. (1953). Mortality in the London fog incident. Lancet, 261(6755), 336–338.

    Article  Google Scholar 

  • Malhotra, P., Saksena, S., & Joshi, V. (2000). Time budgets of infants for exposure assessment: A methodological study. Journal of Exposure Analysis & Environmental Epidemiology, 10, 267–284.

    Article  CAS  Google Scholar 

  • Martos, P. A., & Pawlyszyn, J. (1999). Time-weighted average sampling with solid-phase microextraction devise: Implications for enhanced personal exposure monitoring to airborne pollutants. Analytical Chemistry, 71, 1513–1520.

    Article  CAS  Google Scholar 

  • McCurdy, T., Glen, G., Smith, L., & Lakkadi, Y. (2000). The National Exposure Research Laboratory’s consolidated human activity database. Journal of Exposure Analysis & Environmental Epidemiology, 10, 566–578.

    Article  CAS  Google Scholar 

  • Meng, Q. Y., Turpi, B. J., Polidori, A., Lee, J. H., Weisel, C., Morandi, M., et al. (2005b). PM2.5 of ambient origin: Estimates and exposure errors relevant to PM epidemilogy. Environmental Science and Technology, 39(14), 5105–5112.

    Article  CAS  Google Scholar 

  • Meng, Q. Y., Turpin, B. J., Korn, L., Weisel, C. P., Morandi, M., Colome, S., et al. (2005a). Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. Journal of Exposure Analysis & Environmental Epidemiology, 15, 17–28.

    Article  CAS  Google Scholar 

  • Misra, Ch, Singh, M., Shen, S., Sioutas, C., & Hall, P. (2002). Development and evaluation of a personal cascade impactor sampler. Journal of Aerosol Science, 33, 1027–1047.

    Article  CAS  Google Scholar 

  • Mitakakis, T. Z., Tovey, E. R., Xuan, W., & Marks, G. B. (2000). Personal exposure to allergenic pollen and mould spores in inland New South Wales, Australia. Clinical & Experimental Allergy, 30, 1733–1739.

    Article  CAS  Google Scholar 

  • Monn, C. H. (2001). Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmospheric Environment, 35(1), 1–32.

    Article  CAS  Google Scholar 

  • Monn, Ch., Fuchs, A., Högger, D., Junker, M., Kogelschatz, D., Roth, N., et al. (1997). Particulate matter less than 10μm (PM10) and fine particles less than 2.5μm (PM2.5): relationships between indoor, outdoor and personal concentrations. Science of the Total Environment, 208, 15–21.

    Article  CAS  Google Scholar 

  • Morawska, L., He, C., Hitchins, J., Mengersen, K., & Gilbert, D. (2003). Characteristics of particulate and mass concentrations in residential houses in Brisbane, Australia. Atmospheric Environment, 37, 4195–4203.

    Article  CAS  Google Scholar 

  • Namiesnik, J., Zabiegala, B., Kot-Wasik, A., Partyka, M., & Wasik, A. (2005). Passive sampling and/or extraction techniques in environmental analysis: A review. Analytical and Bioanalytical Chemistry, 381, 279–301.

    Article  CAS  Google Scholar 

  • O’Neill, M. S., Ramirez-Aguilar, M., Meneses-Gonzales, F., Hernández-Avila, M., Geyh, A. S., Sienra-Monge, J. J., et al. (2003). Ozone exposure among Mexico City outdoor workers. Journal of the Air & Waste Management Association, 53(3), 339–346.

    Google Scholar 

  • Oglesby, L., Künzli, N., Röösli, M., Braun-Fahrländer, Ch., Mathys, P., Stern, W., et al. (2000a). Validity of ambient levels of fine particles as surrogate for personal exposure to outdoor air pollution – results of the European EXPOLIS-EAS study (Swiss Center Basel). Journal of the Air & Waste Management Association, 50, 1251–1261.

    CAS  Google Scholar 

  • Oglesby, L., Rotko, T., Krütli, P., Boudet, C., Kruize, H., Jantunen, M. J., et al. (2000b). Personal exposure assessment studies may suffer from exposure-relevant selection bias. Journal of Exposure Analysis & Environmental Epidemiology, 10, 251–266.

    Article  CAS  Google Scholar 

  • Ott, W. R. (1982). Concepts of human exposure to air pollution. Environment International, 7, 179–186.

    Article  Google Scholar 

  • Ott, W. R. (1985). Total human exposure. Environmental Science and Technology, 19(10), 880–886.

    Article  CAS  Google Scholar 

  • Ouyang, G., & Pawliszyn, J. (2006). Recent developments in SPME for on-site analysis and monitoring. Trends in Analytical Chemistry, 25, 602–703.

    Article  CAS  Google Scholar 

  • Palmes, E. D., & Gunnison, A. F. (1973). Personal monitoring device for gaseous contaminants. American Industrial Hygiene Association Journal, 34, 78–81.

    Article  CAS  Google Scholar 

  • Palmes, E. D., Gunnison, A. F., DiMattio, J., & Tomczyk, C. (1976). Personal sampler for nitrogen dioxide. American Industrial Hygiene Association Journal, 37, 570–577.

    Article  CAS  Google Scholar 

  • Pawliszyn, J. (1997). Solid phase microextraction. Theory and practice (264 pp.). New York: Willey WCH.

    Google Scholar 

  • Pellizzari, E., Perritt, R. L., & Clayton, C. A. (1999). National human exposure assessment survey (NHEXAS): exploratory survey of exposure among population subgroups in EPA Region 5. Journal of Exposure Analysis & Environmental Epidemiology, 9, 49–55.

    Article  CAS  Google Scholar 

  • Perdelli, F., Cristina, M. L., Sartini, M., & Orlando, P. (2002). Urinary hydroxyproline as a biomarker of effect after exposure to nitrogen dioxide. Toxicology Letters, 134(1–3), 319–323.

    Article  CAS  Google Scholar 

  • Perico, A., Gottardi, M., Boddi, V., Bavazzano, P., & Lanciotti, E. (2001). Assessment of exposure to polycyclic aromatic hydrocarbons in police in Florence, Italy, through personal air sampling and biological monitoring of the urinary metabolite 1-hydroxypyrene. Archives of Environmental Health, 56, 506–512.

    Article  CAS  Google Scholar 

  • Perlin, S. A., Sexton, K., & Wong, D. W. S. (1999). An examination of race and poverty for populations living near industrial sources of air pollution. Journal of Exposure Analysis and Environmental Epidemiology, 9(1), 29–48.

    Article  CAS  Google Scholar 

  • Pope, C. A., III, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56, 709–742.

    CAS  Google Scholar 

  • Quintana, P. J. E., Valenzia, J. R., Delfino, R. J., & Liu, L.-J. S. (2001). Monitoring of 1min personal particulate matter exposures in relation to voice recorded time activity data. Environmental Research Section A, 87, 199–213.

    Article  CAS  Google Scholar 

  • Ramachandran, G., Adgate, J. L., Pratt, G. C., & Sexton, K. (2003). Characterizing indoor and outdoor 15 minute average PM2.5 concentrations in urban neighborhoods. Aerosol Science and Technology, 37, 33–45.

    Article  CAS  Google Scholar 

  • Rappaport, S. M., Symanski, E., Yager, J. W., & Kupper, L. L. (1995). The relationship between environmental monitoring and biological markers in exposure assessment. Environmental Health Perspectives, 103(Suppl. 3), 49–53.

    Article  Google Scholar 

  • Raynie, D. E. (2000). Modern extraction techniques. Analytical Chemistry, 78, 3997–4003.

    Article  CAS  Google Scholar 

  • Reed, K. J., Jimenez, M., Lioy, P. J., & Freeman, N. C. G. (1999). Quantification of children’s hand and mouthing activities. Journal of Exposure Analysis & Environmental Epidemiology, 9, 513–520.

    Article  CAS  Google Scholar 

  • Ren, Z. G., & Stewart, J. (2005). Prediction of personal exposure to contaminant sources in industrial buildings using a sub-zonal model. Environmental Modelling & Software, 20(5), 623–638.

    Article  Google Scholar 

  • Rojas-Bracho, L., Suh, H., & Koutrakis, P. (2000). Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. Journal of Exposure Analysis & Environmental Epidemiology, 10, 294–306.

    Article  CAS  Google Scholar 

  • Rubow, K. L., Marple, V. A., Olin, J., & McCawley, M. A. (1987). A personal cascade impactor: design, evaluation and calibration. American Industrial Hygiene Association Journal, 48(6), 532–538.

    CAS  Google Scholar 

  • Ruchirava, M., Mahidol, C., Tangjarukij, C., Pui-Ock, S., Jensen, O., Kampeerawipakorn, O., et al. (2002). Exposure to genotoxins present in ambient air in Bangkok, Thailand – particle associated polycyclic aromatic hydrocarbons and biomarkers. Science of the Total Environment, 287, 121–132.

    Article  Google Scholar 

  • Sarnat, S. E., Coull, B. A., Schwartz, J., Gold, D. R., & Suh, H. H. (2006). Factors affecting the association between ambient concentrations and personal exposures to particles and gases. Environmental Health Perspectives, 114, 649–654.

    Article  CAS  Google Scholar 

  • Sarnat, J. A., Koutrakis, P., & Suh, H. (2000). Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore. Journal of the Air & Waste Management Association, 50, 1184–1198.

    CAS  Google Scholar 

  • Sarnat, J. A., Schwartz, J., Catalano, P. J., & Suh, H. H. (2001). Gaseous pollutants in particulate matter epidemiology: Confounders or surrogates? Environmental Health Perspectives, 109(10), 1053–1061.

    CAS  Google Scholar 

  • Saxena, S., Prasad, R., Pal, R. S., & Joshi, V. (1992). Patterns of daily exposure to TSP and CO in the Garhwal Himalaya. Atmospheric Environment, 26A(11), 2125–2134.

    Google Scholar 

  • Scherer, G. (2005). Biomonitoring of inhaled complex mixtures – ambient air, diesel exhaust and cigarette smoke. Experimental and Toxicologic Pathology, 57, 75–110.

    Article  CAS  Google Scholar 

  • Scherer, G., & Richter, E. (1997). Biomonitoring exposure to environmental tobacco smoke (ETS): A critical reappraisal. Human & Experimental Toxicology, 16(8), 449–459.

    Article  CAS  Google Scholar 

  • Scherer, G., Ruppert, T., Daube, H., Kossien, I., Riedel, K., Tricker, A. R., et al. (1995). Contribution of tobacco smoke to environmental benzene exposure in Germany. Environment International, 21, 779–789.

    Article  CAS  Google Scholar 

  • Schulte, P. A., & Talaska, G. (1995). Validity criteria for the use of biological markers of exposure to chemical agents in environmental epidemiology. Toxicology, 101, 73–78.

    Article  CAS  Google Scholar 

  • Sexton, K., Gong, H., Ailar, J. C., Ford, J. G., Gold, D. R., Lambert, W. E., et al. (1993). Air pollution health risks. Do class and race matter? Toxicology & Industrial Health, 9(5), 843–878.

    CAS  Google Scholar 

  • Sexton, K., & Ryan, P. B. (1988). Assessment of human exposure to air pollution: methods, measurements and models. In A. Y. Watson, R. R. Bates, & D. Kennedy (Eds.), Air pollution, the automobile and public health (pp. 207–238). Washington, DC: National Academic Press.

    Google Scholar 

  • Sexton, K., Selevan, S., Wagne, D., & Lybarger, J. (1992). Estimating human exposures to environmental pollutants: The availability of existing databases. Archives of Environmental Health, 47(6), 398–407.

    Article  CAS  Google Scholar 

  • Sexton, K., Spengler, J. D., & Treitman, R. D. (1984). Personal exposure to respirable particles: A case study in Waterbury, Vermont. Atmospheric Environment, 18, 1385–1398.

    Article  Google Scholar 

  • Singh, M., Misra, Ch, & Sioutas, C. (2003). Field evaluation of a personal cascade impactor sampler (PCIS). Atmospheric Environment, 37, 4781–4793.

    Article  CAS  Google Scholar 

  • Sioutas, S., Kim, S., Chang, M., Terrel, L. L., & Gong, H., Jr. (2000). Field evaluation of a modified DataRAM MIE scattering monitor for real-time PM2.5 mass concentration measurements. Atmospheric Environment, 34, 4829–4838.

    Article  CAS  Google Scholar 

  • Smith, K. R. (2002). Indoor air pollution in developing countries: Recommendations for research. Indoor Air, 12(3), 198–207.

    Article  CAS  Google Scholar 

  • Staimer, N., Delfino, R. J., Buffalino, Ch, Fine, P. M., Sioutas, C., & Kleinman, M. T. (2005). A miniaturized active sampler for the assessment of personal exposure to nitrogen dioxide. Analytical and Bioanalytical Chemistry, 383, 955–962.

    Article  CAS  Google Scholar 

  • Tardiff, R. G., & Goldstein, B. D. (Eds.). (1991). Methods for assessing exposure of human and non-human biota (417 pp.). SCOPE 46, IPCS Joint Symposia. Chichester, Wiley.

    Google Scholar 

  • Thomas, K. W., Pellizzari, E. D., Clayton, A., Whitaker, D. A., Shores, R. C., Spengler, J., et al. (1993). Particle total exposure assessment methodology (PTEAM) 1990 study: Method performance and data quality for personal, indoor, and outdoor monitoring. Journal of Exposure Analysis & Environmental Epidemiology, 3, 203–226.

    CAS  Google Scholar 

  • Vinzents, P. S. (1996). A passive personal dust monitor. Annals of Occupational Hygiene, 40(3), 261–280.

    Article  CAS  Google Scholar 

  • Wallace, L. (2000). Correlations of personal exposure to particles with outdoor air measurements: a review of recent studies. Aerosol Science and Technology, 32, 15–25.

    Article  CAS  Google Scholar 

  • Wallace, L. A., Mitchell, H., O’Connor, G. T., Neas, L., Lippmann, M., Kattan, M., et al. (2003). Particle concentrations in inner city homes of children with asthma: the effect of smoking, cooking, and outdoor pollution. Environmental Health Perspectives, 111(9), 1265–1272.

    Article  CAS  Google Scholar 

  • Ward, J. B., Jr., & Henderson, R. E. (1996). Identification of needs in biomarker research. Environmental Health Perspectives, 104, 895–900.

    Article  Google Scholar 

  • Watts, R., Lewtas, J., Stevens, R., Hartlage, T., Pinto, J., Williams, R., et al. (1994). Czech-United-States EPA health study – assessment of personal and ambient air exposures to pah and organic mutagens in the Teplice district of Northern Bohemia. International Journal of Environmental Analytical Chemistry, 56(4), 271–287.

    Article  CAS  Google Scholar 

  • Weis, B. K., Balshawl, D., Barr, J. R., Brown, D., Ellisman, M., Liov, P., et al. (2005). Personalized exposure assessment: Promising approaches for human environmental health research. Environmental Health Perspectives, 113(7), 840–848.

    Article  CAS  Google Scholar 

  • Wheeler, A. J., Williamd, I., Beaumont, R. A., & Hamilton, R. S. (2000). Characterization of particulate matter sampled during a study of children’s personal exposure to airborne particulate matter in a UK urban environment. Environmental Monitoring and Assessment, 65, 69–77.

    Article  CAS  Google Scholar 

  • Whitmore, R. W., Byron, M. Z., Clayton, C. A., Thomas, K. W., Zelon, H. S., Pellizzari, E., et al. (1999). Sampling design, response rate and analysis weights for the National Human Exposure Assessment Survey (NHEXAS) in EPA region 5. Journal of Exposure Analysis & Environmental Epidemiology, 9, 369–380.

    Article  CAS  Google Scholar 

  • Williams, R., Suggs, J., Creason, J., Rodes, C. H., Lawless, P., Kwok, R., et al. (2000). The 1998 Baltimore particulate matter epidemiology–exposure study: Part 2. Personal exposure assessment associated with an elderly study population. Journal of Exposure Analysis & Environmental Epidemiology, 10, 533–543.

    Article  CAS  Google Scholar 

  • Wilson, W. E., Mage, D. T., & Grant, L. D. (2000). Estimating separately personal exposure to ambient and nonambient particulate matter for epidemiology and risk assessment: Why and how. Journal of the Air & Waste Management Association, 50, 1167–1183.

    CAS  Google Scholar 

  • Wu, Ch.-F., Delfino, R. J., Floro, J. N., Quintana, P. J. E., Samimi, B. S., Kleinman, M. T., et al. (2005b). Exposure assessment and modelling of particulate matter for asthmatic children using personal nephelometers. Atmospheric Environment, 39, 3457–3469.

    Article  CAS  Google Scholar 

  • Wu, Ch.-F., Delfino, R. J., Floro, J. N., Samimi, B. S.,Quintana, P. J. E., Kleinman, M. T., et al. (2005a). Evaluation and quality control of personal nephelometers in indoor, outdoor and personal environments. Journal of Exposure Analysis & Environmental Epidemiology, 15, 99–110.

    Article  CAS  Google Scholar 

  • Yanagisawa, Y., Nishimura, H., Matsuki, H., Osaka, F., & Ksuga, H. (1988). Urinary hydroxyproline to creatinine ratio as a biological effect marker of exposure to NO2 and tobacco smoke. Atmospheric Environment, 22(10), 2195–2203.

    Article  CAS  Google Scholar 

  • Yanoski, J. D., Williams, P. L., & MacIntosh, D. L. (2002). A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air. Atmospheric Environment, 36, 107–113.

    Article  Google Scholar 

  • Zagury, E., Le Moulec, Y., & Momas, I. (2000). Exposure of Paris taxi drivers to automobile air pollutants within their vehicles. Occupational and Environmental Medicine, 57, 406–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was in part supported by the Ministry of Education, Youth and Sports of the Czech republic under the scheme NPV II, No. 2B08077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Braniš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Braniš, M. (2010). Personal Exposure Measurements. In: Lazaridis, M., Colbeck, I. (eds) Human Exposure to Pollutants via Dermal Absorption and Inhalation. Environmental Pollution, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8663-1_4

Download citation

Publish with us

Policies and ethics