Skip to main content

Infrared Nerve Stimulation: A Novel Therapeutic Laser Modality

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

Neural stimulation is the process of activating neurons using an external source to evoke action potential propagation down an axon. Electrical, chemical, thermal, optical, and mechanical methods have all been reported to stimulate neurons in both the central nervous system (CNS) and the peripheral nervous system (PNS) [1]. For nearly 2 centuries electrical stimulation has been the gold standard for the stimulation of neurons and other excitable tissues. It functions by increasing the transmembrane potential to activate voltage-gated ion channels which induce action potential propagation down the axon of a neuron [2–5]. However, electrical stimulation lacks spatial precision due to the inherent electrical field propagation which results in the recruiting of multiple (unwanted) neuronal fibers. Additionally, electrical stimulation induces a stimulation artifact which can mask neuronal signals resulting from the simulation [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoonhoven R and Stegeman DF. Models and analysis of compound nerve action potentials. Crit. Rev. Biomed. Eng., 19:47–111 (1991).

    Google Scholar 

  2. Cole K. Membranes, ions, and impulses: A chapter of classical biophysics. University of California, Berkely, p. 569 (1968).

    Google Scholar 

  3. Plonsey R and Barr R. Bioelectricity: A quantitative approach. Kluwer Academic, New York, 2nd edition (2002).

    Google Scholar 

  4. Hille B. Ion channels of excitable membranes. Sinaure Associates, Sunderland, MA, 3rd edition (2001).

    Google Scholar 

  5. Huang C, Harootunian A, Maher M, Quan C, Raj C, McCormack K, Numann R, Negulescu P, Gonzalez J. Characterization of voltage-gated sodium channel blockers by electrical stimulation and fluorescence detection of membrane potential. Nat. Biotechnol., 24:439–446 (2006).

    Article  Google Scholar 

  6. McGill K, Cummins K, Dorfman L, Berlizot BB, Leutkemeyer K, Nishimura D, Widrow B. On the nature and elimination of stimulus artifact in nerve signals evoked and recorded using surface electrodes. IEEE Trans. Biomed. Eng., 29:129–137 (1982).

    Article  Google Scholar 

  7. Civillico E and Contreras D. Comparison of responses to electrical stimulation and whisker deflection using two different voltage-sensitive dyes in mouse barrel cortex in Vivo. J. Membr. Biol., 208:171–182 (2005).

    Article  Google Scholar 

  8. Palanker D, Vankov A, Huie P, and Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural. Eng., 2:S105–S120 (2005).

    Article  Google Scholar 

  9. Miller CA, Abbas PJ, and Brown CJ. An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear Hear, 21:280–290 (2000).

    Article  Google Scholar 

  10. Wu WH, Ponnudurai R, Katz J, Pott CB, Chilcoat R, Uncini A, Rapoport S, Wade P, Mauro A. A failure to confirm report of light-evoked response of peripheral nerve to low power helium-neon laser light stimulus. Brain Res., 401:407–408 (1987).

    Article  Google Scholar 

  11. Balaban P, Esenaliev R, Karu T, Kutomkina E, Letokhov V, Oraevsky A, and Ovcharenko N. He-Ne laser irradiation of single identified neurons. Lasers Surg. Med., 12:329–337 (1992).

    Article  Google Scholar 

  12. Bragard D, Chen AC, and Plaghki L. Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci. Lett., 209:81–84 (1996).

    Article  Google Scholar 

  13. Gigo-Benato D, Geuna S, de Castro Rodrigues A, Tos P, Fornaro M, Boux E, Battiston B, and Giacobini-Robecchi MG. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: A double-blind randomized study in the rat median nerve model. Lasers Med. Sci., 19:57–65 (2004).

    Article  Google Scholar 

  14. Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, and Oron U. Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed. Laser Surg., 24:458–466 (2006).

    Article  Google Scholar 

  15. Wells J, Kao C, Jansen ED, Konrad P, and Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J. Biomed. Opt., 10:064003 (2005).

    Article  ADS  Google Scholar 

  16. Fork RL. Laser stimulation of nerve cells in Aplysia. Science 171:907–908 (1971).

    Article  ADS  Google Scholar 

  17. Allegre G, Avrillier S, and Albe-Fessard D. Stimulation in the rat of a nerve fiber bundle by a short UV pulse from an excimer laser. Neurosci. Lett., 180:261–264 (1994).

    Article  Google Scholar 

  18. Hirase H, Nikolenko V, Goldberg JH, and Yuste R. Multiphoton stimulation of neurons. J. Neurobiol., 51:237–247 (2002).

    Article  Google Scholar 

  19. Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, and Mahadevan-Jansen A. Optical stimulation of neural tissue in vivo. Opt. Lett., 30:504–506 (2005).

    Article  ADS  Google Scholar 

  20. Izzo AD, Walsh JT Jr, Jansen ED, Bendett M, Webb J, Ralph H, and Richter CP. Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength. IEEE Trans. Biomed. Eng., 54:1108–1114 (2007).

    Article  Google Scholar 

  21. Izzo AD, Richter C-P, Jansen ED, and Walsh J. Laser stimulation of the auditory nerve. Lasers Surg. Med., 38:745–753 (2006).

    Article  Google Scholar 

  22. Izzo AD, Walsh JT, Ralph H, Webb J, Bendett M, Wells J, and Richter C-P. Laser stimulation of auditory neurons: Effect of shorter pulse duration and penetration depth. Biophys. J. Biophysj.107.117150 (2008).

    Google Scholar 

  23. Teudt IU, Nevel AE, Izzo AD, Walsh JT Jr, and Richter CP. Optical stimulation of the facial nerve: A new monitoring technique? Laryngoscope 117:1641–1647 (2007).

    Article  Google Scholar 

  24. Fried NM, Lagoda GA, Scott NJ, Su L-M, and Burnett AL. Optical stimulation of the cavernous nerves in the rat prostate. In: Photonic therapeutics and diagnostics IV. SPIE, San Jose, CA, USA, 1st edition, pp. 684213–684216 (2008).

    Google Scholar 

  25. Duke AR, Cayce JM, Gessel IV, and Jansen ED. Optical stimulation for the efferent vagus nerve in vivo. In: Neural Interfaces Conference. Cleveland, OH (2008).

    Google Scholar 

  26. Wells J, Konrad P, Kao C, Jansen ED, and Mahadevan-Jansen A. Pulsed laser versus electrical energy for peripheral nerve stimulation. J. Neurosci. Methods, 163:326–337 (2007).

    Article  Google Scholar 

  27. Geddes LA and Bourland JD. The strength-duration curve. IEEE Trans. Biomed. Eng., 32:458–459 (1985).

    Article  Google Scholar 

  28. Geddes LA and Bourland JD. Tissue stimulation: Theoretical considerations and practical applications. Med. Biol. Eng. Comput., 23:131–137 (1985).

    Article  Google Scholar 

  29. van Hillegersberg R. Fundamentals of laser surgery. Eur. J. Surg., 163:3–12 (1997).

    Google Scholar 

  30. Vogel A and Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev., 103:577–644 (2003).

    Article  Google Scholar 

  31. Paxinos G. The rat nervous system. Elsevier, Sydney, Australia, 3rd edition (2004).

    Google Scholar 

  32. Edwards GS and Hutson MS. Advantage of the Mark-III FEL for biophysical research and biomedical applications. J. Synchrotron. Radiat., 10:354–357 (2003).

    Article  Google Scholar 

  33. Hale GM and Querry MR. Optical-constants of water in 200-nm to 0.2-mm wavelength region. Appl. Opt., 12:555–563 (1973).

    Article  ADS  Google Scholar 

  34. Razvi HA, Chun SS, Denstedt JD, and Sales JL. Soft-tissue applications of the holmium:YAG laser in urology. J. Endourol., 9:387–390 (1995).

    Article  Google Scholar 

  35. Topaz O, Rozenbaum EA, Luxenberg MG, and Schumacher A. Laser-assisted coronary angioplasty in patients with severely depressed left ventricular function: Quantitative coronary angiography and clinical results. J. Interv. Cardiol., 8:661–669 (1995).

    Article  Google Scholar 

  36. Kabalin JN, Gilling PJ, and Fraundorfer MR. Application of the holmium:YAG laser for prostatectomy. J. Clin. Laser Med. Surg., 16:21–27 (1998).

    Google Scholar 

  37. Fong M, Clarke K, and Cron C. Clinical applications of the holmium:YAG laser in disorders of the paediatric airway. J. Otolaryngol., 28:337–343 (1999).

    Google Scholar 

  38. Jones JW, Schmidt SE, Richman BW, Miller CC III, Sapire KJ, Burkhoff D, and Baldwin JC. Holmium:YAG laser transmyocardial revascularization relieves angina and improves functional status. Ann. Thorac. Surg., 67:1596–1601; discussion 1601–1592 (1999).

    Article  Google Scholar 

  39. Wells JD, Thomsen S, Whitaker P, Jansen ED, Kao CC, Konrad PE, and Mahadevan-Jansen A. Optically mediated nerve stimulation: Identification of injury thresholds. Lasers Surg. Med., 39:513–526 (2007).

    Article  Google Scholar 

  40. Wells J, Kao C, Konrad P, Milner T, Kim J, Mahadevan-Jansen A, and Jansen ED. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J., 93:2567–2580 (2007).

    Article  Google Scholar 

  41. Niemz MH. Laser-tissue interactions. Springer, Berlin, 3rd edition (2004).

    Google Scholar 

  42. McCray JA and Trentham DR. Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Biophys. Chem., 18:239–270 (1989).

    Article  Google Scholar 

  43. Eder M, Zieglgansberger W, and Dodt HU. Neocortical long-term potentiation and long-term depression: Site of expression investigated by infrared-guided laser stimulation. J. Neurosci., 22:7558–7568 (2002).

    Google Scholar 

  44. Eder M, Zieglgansberger W, and Dodt HU. Shining light on neurons–elucidation of neuronal functions by photostimulation. Rev. Neurosci., 15:167–183 (2004).

    Google Scholar 

  45. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem. Photobiol., 53:825–835 (1991).

    Google Scholar 

  46. Waldman G. Introduction to light: The physics of light, vision, and color. Prentice-Hall, Englewood Cliffs, NJ (1983).

    Google Scholar 

  47. Shusterman V, Jannetta PJ, Aysin B, Beigel A, Glukhovskoy M, and Usiene I. Direct mechanical stimulation of brainstem modulates cardiac rhythm and repolarization in humans. J. Electrocardiol., 35(Suppl):247–256 (2002).

    Article  Google Scholar 

  48. Norton SJ. Can ultrasound be used to stimulate nerve tissue? Biomed. Eng., Online 2:6 (2003).

    Article  MathSciNet  Google Scholar 

  49. Rylander CG, Dave DP, Akkin T, Milner TE, Diller KR, and Welch AJ. Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy. Opt. Lett., 29:1509–1511 (2004).

    Article  ADS  Google Scholar 

  50. Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg. Clin. North Am., 72:531–558 (1992).

    Google Scholar 

  51. Stein RJ, Santos S, Nagatomi J, Hayashi Y, Minnery BS, Xavier M, Patel AS, Nelson JB, Futrell WJ, Yoshimura N, Chancellor MB, and De Miguel F. Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J. Urol., 172:1175–1178 (2004).

    Article  Google Scholar 

  52. Liapi A and Wood JN. Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur. J. Neurosci., 22:825–834 (2005).

    Article  Google Scholar 

  53. Takumida M, Kubo N, Ohtani M, Suzuka Y, and Anniko M. Transient receptor potential channels in the inner ear: Presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol., 125:929–934 (2005).

    Article  Google Scholar 

  54. Yu S, Undem BJ, and Kollarik M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol., 563:831–842 (2005).

    Article  Google Scholar 

  55. Watanabe N, Horie S, Michael GJ, Keir S, Spina D, Page CP, and Priestley JV. Immunohistochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience, 141:1533–1543 (2006).

    Article  Google Scholar 

  56. Littlefield P, Izzo AD, Mundi J, Walsh JT, Jansen ED, Bendett M, Webb J, Ralph H, and Richter C-P. Characterization of single auditory nerve fibers in response to laser stimulation. In: Optical interactions with tissue and cells XIX. SPIE, San Jose, CA, 1st edition, pp. 68540F–68546F (2008).

    Google Scholar 

  57. Richter CP, Bayon R, Izzo AD, Otting M, Suh E, Goyal S, Hotaling J, and Walsh JT Jr. Optical stimulation of auditory neurons: Effects of acute and chronic deafening. Hear Res., 242:42–51 (2008).

    Article  Google Scholar 

  58. Agmon A and Connors BW. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience, 41:365–379 (1991).

    Article  Google Scholar 

  59. Kao CQ and Coulter DA. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro. J. Neurophysiol., 77:2661–2676 (1997).

    Google Scholar 

  60. Salzman CD, Britten KH, and Newsome WT. Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346:174–177 (1990).

    Article  ADS  Google Scholar 

  61. Stepniewska I, Fang PC, and Kaas JH. Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc. Natl. Acad. Sci. U.S.A., 102:4878–4883 (2005).

    Article  ADS  Google Scholar 

  62. Tehovnik EJ, Tolias AS, Sultan F, and Slocum WM. Logothetis NK direct and indirect activation of cortical neurons by electrical microstimulation. J. Neurophysiol., 96:512–521 (2006).

    Article  Google Scholar 

  63. Weiner RL. Peripheral nerve neurostimulation. Neurosurg. Clin. N. Am., 14:401–408 (2003).

    Article  Google Scholar 

  64. Constantoyannis C, Kumar A, Stoessl AJ, and Honey CR. Tremor induced by thalamic deep brain stimulation in patients with complex regional facial pain. Mov. Disord., 19:933–936 (2004).

    Article  Google Scholar 

  65. Novakova L, Ruzicka E, Jech R, Serranova T, Dusek P, and Urgosik D. Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neuro. Endocrinol. Lett., 28:21–25 (2007).

    Google Scholar 

  66. Umemura A, Toyoda T, Yamamoto K, Oka Y, Ishii F, and Yamada K. Apraxia of eyelid opening after subthalamic deep brain stimulation may be caused by reduction of levodopa. Parkinsonism Relat. Disord., 14(8):655–657 (2008).

    Article  Google Scholar 

  67. Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Botzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, and Deuschl G. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: A randomised, multicentre study. Lancet Neurol., 7:605–614 (2008).

    Article  Google Scholar 

  68. Fiore L, Corsini G, and Geppetti L. Application of non-linear filters based on the median filter to experimental and simulated multiunit neural recordings. J. Neurosci. Methods, 70:177–184 (1996).

    Article  Google Scholar 

  69. Wagenaar DA and Potter SM. Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Methods, 120:113–120 (2002).

    Article  Google Scholar 

  70. Andreasen LN and Struijk JJ. Artefact reduction with alternative cuff configurations. IEEE Trans. Biomed. Eng., 50:1160–1166 (2003).

    Article  Google Scholar 

  71. Agnew WF, McCreery DB, Yuen TG, and Bullara LA. Histologic and physiologic evaluation of electrically stimulated peripheral nerve: Considerations for the selection of parameters. Ann. Biomed. Eng., 17:39–60 (1989).

    Article  Google Scholar 

  72. Chen LM, Turner GH, Friedman RM, Zhang N, Gore JC, Roe AW, and Avison MJ. High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging. J. Neurosci., 27:9181–9191 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Duco Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wells, J.D., Cayce, J.M., Mahadevan-Jansen, A., Konrad, P.E., Jansen, E.D. (2010). Infrared Nerve Stimulation: A Novel Therapeutic Laser Modality. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_24

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics