Skip to main content

AC Electrokinetic Particle Manipulation in Microsystems

  • Conference paper
  • First Online:
Microfluidics Based Microsystems
  • 3514 Accesses

Abstract

Lab-on-Chip systems integrate multiple functionalities on a single platform. Automated or remote manipulation and analysis of particles and fluids is a key element in microfluidic devices. Microelectrodes can be integrated into these devices to generate large electric fields and field gradients using low voltages. Electrokinetics is an attractive method for integrating particle manipulation and separation within such systems. The electrokinetic forces are easy to control by designing optimum electrode structures and choice of field and frequency. In this chapter, the theory of AC electrokinetics is reviewed and example applications for manipulation of particles are provided. The use of dielectrophoresis (DEP) for manipulating micro particles is then described, together with a discussion on scaling issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge (1978).

    Google Scholar 

  2. R. Pethig, Dielectric and electronic properties of biological materials, Wiley, UK (1979).

    Google Scholar 

  3. H. Morgan and N. G. Green, AC Electrokinetics: colloids and nanoparticles, Research Studies Press, Ltd. Baldock, Hertfordshire, England (2003).

    Google Scholar 

  4. Y. Huang, R. Hölzel, R. Pethig and X-B. Wang, Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies, Phys. Med. Biol., 37, 1499–1517 (1992).

    Article  Google Scholar 

  5. S. Masuda, M. Washizu and I. Wadare, Separation of small particles suspended in liquid by non-uniform travelling field, IEEE Trans. Ind. Appl., 23, 474–480 (1987).

    Article  Google Scholar 

  6. S. Masuda, M. Washizu and I. Kawabata, Movement of blood cells in liquid by nonuniform travelling field, IEEE Trans. Ind. Applicat., 24, 214–222 (1988).

    Google Scholar 

  7. G. Fuhr, R. Hagedorn, T. Müller and J. Gimsa, Asynchronous travelling-wave induced linear motion of living cells, Studia Biophys, 140, 79–102 (1991).

    Google Scholar 

  8. Y. Huang, X-B. Wang, J. A. Tame and R. Pethig, Electrokinetic behaviour of colloidal particles in travelling electric field: studies using yeast cells, J. Phys. D: Appl. Phys., 26, 1528–1535 (1993).

    Article  ADS  Google Scholar 

  9. W. M. Arnold and U. Zimmerman, Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa, Z. Naturforsch., 37c, 908–915 (1982).

    Google Scholar 

  10. W. M. Arnold and U. Zimmerman, Electrorotation: development of a technique for dielectric measurements on individual cells and particles, J. Electrostat., 21, 151–191 (1988).

    Article  Google Scholar 

  11. X-F. Zhou, G. H. Markx, R. Pethig and I. M. Eastwood, Differentiation of viable and non-viable bacteria biofilms using electrorotation, Biochim. Biophys. Acta, 1245, 85–93 (1995).

    Article  Google Scholar 

  12. C. E. Hodgson and R. Pethig, Determination of the viability of Escherichia coli at the single organism level by electrorotation, Clin. Chem., 44, 2049–2051 (1998).

    Google Scholar 

  13. C. Dalton, A. D. Goater, J. Drysdale and R. Pethig, Parasite viability by electrorotation, Colloid. Surface. A: Physicochem. Eng. Aspects, 195, 263–268 (2001).

    Article  Google Scholar 

  14. C. Dalton, A. D. Goater, R. Pethig and H. V. Smith, Viability of Giardia intestinalis cysts and viability and sporulation state of Cyclospora cayetanensis oocysts determined by electrorotation, Appl. Environ. Microbiol., 67, 586–590 (2001).

    Article  Google Scholar 

  15. X-F. Zhou, G. H. Markx and R. Pethig, Effect of biocide concentration on electrorotation spectra of yeast cells, Biochim. Biophys. Acta, 1281, 60–64 (1996).

    Article  Google Scholar 

  16. K. L. Chan, P. R. C. Gascoyne, F. F. Becker and R. Pethig, Electrorotation of liposomes: verification of dielectric multi-shell model for cells, Biochim. Biophys. Acta, 1349, 182–196 (1997).

    Article  Google Scholar 

  17. R. Hölzel, Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz, Biophys. J., 73, 1103–1109 (1997).

    Article  Google Scholar 

  18. X-F. Zhou, J. P. H. Burt and R. Pethig, Automatic cell electrorotation measurements: studies of the biological effects of low-frequency magnetic fields and of heat shock, Phys. Med. Biol., 43, 1075–1090 (1998).

    Article  Google Scholar 

  19. J. Yang, Y. Huang, X-J. Wang, X-B. Wang, F. F. Becker and P. R. C. Gascoyne, Dielectric properties of human leukocytes subpopulations determined by electrorotation as a cell separation criterion, Biophys. J., 76, 3307–3314 (1999).

    Article  Google Scholar 

  20. M. Cristofanilli, G. D. Gasperis, L. S. Zhang, M. C. Huang, P. R. C. Gasconye and G. N. Horotobagyi, Automated electrorotation to reveal dielectric variations related to HER-2/neu Overexpression in MCF-7 sublines, Clin. Cancer Res., 8, 615–619 (2002).

    Google Scholar 

  21. C. Dalton, A. D. Goater, J. P. H. Burt and H. V. Smith, Analysis of parasites by electrorotation, J. Appl. Microbio.,96, 24–32 (2004).

    Article  Google Scholar 

  22. T. B. Jones, Electromechanics of particles, Cambridge University Press, Cambridge (1995).

    Book  Google Scholar 

  23. X-B. Wang, R. Pethig and T. B. Jones, Relationship of Dielectrophoretic and electrorotational behaviour exhibited by polarized particles, J. Phys. D: Appl. Phys. 25, 905–912 (1992).

    Article  ADS  Google Scholar 

  24. X-B. Wang, Y. Huang, R. Holzel, J. P. H. Burt and R. Pethig, Theoretical and experimental investigations of the interdependence of the dielectric, Dielectrophoretic and electrorotational behaviour of colloidal particles, J. Phys. D: Appl. Phys.,26, 312–322 (1993).

    Article  ADS  Google Scholar 

  25. T. B. Jones, Multipole corrections to dielectrophoretic force, IEEE Trans. Ind. Appls., IA-21, 930–934 (1985).

    Article  Google Scholar 

  26. T. B. Jones and M. Washizu, Equilibria and dynamics of DEP-levitated particle: multipolar theory, J. of Electrostat., 33, 199–212 (1994).

    Article  Google Scholar 

  27. T. B. Jones and M. Washizu, Multipolar dielectrophoretic and electrorotation theory, J. of Electrostat., 37, 121–134 (1996).

    Article  Google Scholar 

  28. M. Washizu, Precise calculation of dielectrophoretic force in arbitrary field, J. of Electrostat., 29, 177–188 (1992).

    Article  Google Scholar 

  29. M. Washizu and T. B. Jones, Multipolar dielectrophoretic force calculation, J. of Electrostat., 33, 187–198 (1994).

    Article  Google Scholar 

  30. X. Wang, X-B Wang and P. R. C. Gascoyne, General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method, J. of Electrostat., 39, 277–295 (1997).

    Article  Google Scholar 

  31. H. Morgan, M. P. Hughes and N. G. Green, Separation of submicron bioparticles by dielectrophoresis, J. Biophys., 77, 516–525 (1999).

    Article  Google Scholar 

  32. M. P. Hughes and H. Morgan, Dielectrophoretic characterization and separation of antibody-coated submicrometer latex spheres, Anal. Chem., 71, 3441–3445 (1999).

    Article  Google Scholar 

  33. N. G. Green, A. Ramos and H. Morgan, Ac electrokinetics: a survey of sub-micrometer particle dynamics, J. Phys. D: Appl. Phys., 33, 632–641 (2000).

    Article  ADS  Google Scholar 

  34. E. B. Cummings and A. K. Singh, Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results, Anal. Chem., 75, 4724–4731 (2003).

    Article  Google Scholar 

  35. H. Morgan and N. G. Green, Dielectrophoretic manipulation of rod-shaped viral particles, J. Electrostat., 42, 279–293 (1997).

    Article  Google Scholar 

  36. N. G. Green and H. Morgan, Manipulation and trapping of sub-micron bioparticles using dielectrophoresis, J. Biochem. Biophys. Methods, 35, 89–102 (1997).

    Article  Google Scholar 

  37. M. P. Hughes, H. Morgan, F. J. Rixon, J. P. H. Burt and R. Pethig, Manipulation of herpes simplex virus I by dielectrophoresis, Biochem. Biophys. Acta, 1425, 119–126 (1998).

    Article  Google Scholar 

  38. M. P. Hughes, H. Morgan and F. J. Rixon, Dielectrophoretic manipulation and characterization of herpes simplex virus type I capsids, European Biophys. J., 30, 268–272 (2001).

    Article  Google Scholar 

  39. M. P. Hughes, H. Morgan and F. J. Rixon, Measuring the dielectric properties of herpes simplex virus type I virions with dielectrophoresis, Biochem. Biophys. Acta, 1571, 1–8 (2002).

    Article  Google Scholar 

  40. J. A. R. Price, J. P. H. Burt and R. Pethig, Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms, Biochim. Biophys. Acta, 964, 221–230 (1988).

    Article  Google Scholar 

  41. J. P. H. Burt, T. A. K. A-Ameen and R. Pethig, An optical dielectrophoresis spectrometer for low-frequency measurements on colloidal suspensions, J. Phys. E: Sci. Instrum., 22, 952–957 (1989).

    Article  ADS  Google Scholar 

  42. G. H. Markx, P. A. Dyda and R. Pethig, Dielectrophoretic separation of bacteria using a conductivity gradient, J. Biotechnol., 51, 175–180 (1996).

    Article  Google Scholar 

  43. M. P. Hughes and H. Morgan, Measurement of bacterial flagellar thrust by negative dielectrophoresis, Biotechnol. Prog., 15, 245–249 (1999).

    Article  Google Scholar 

  44. B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings and Y. Fintschenko, Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water, Electrophoresis, 25, 1695–1704 (2004).

    Article  Google Scholar 

  45. B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings and Y. Fintschenko, Dielectrophoretic concentration and separation of live and dead bacteria in an Array of insulators, Anal. Chem., 76, 1571–1579 (2004).

    Article  Google Scholar 

  46. Y. Huang and R. Pethig, Electrode design for negative dielectrophoresis, Meas. Sci. Technol., 2, 1142–1146 (1991).

    Article  ADS  Google Scholar 

  47. P. R. C. Gascoyne, Y. Huang, R. Pethig, J. Vykoukal and F. F. Becker, Dielectrophoretic separation of mammalian cells studied by computerized image analysis, Meas. Sci. Technol., 3, 439–445 (1992).

    Article  ADS  Google Scholar 

  48. Y. Huang, R. Hölzel, R. Pethig and X-B. Wang, Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies, Phys. Med. Biol., 37, 1499–1517 (1992).

    Article  Google Scholar 

  49. S. Archer, T. T. Li, A. T. Evans, S. T. Britland and H. Morgan, Cell reactions to dielectrophoretic manipulation, Biochem. Biophys. Res. Comm., 257, 687–698 (1999).

    Article  Google Scholar 

  50. R. Pethig, V. Bressler, C. Carswell-Crumption, Y. Chen, L. Foster-Haje, M. E. García-Ojeda, R. S. Lee, G. M. Lock, M. S. Talary and K. M. Tate, Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling system, Electrophoresis, 23, 2057–2063 (2002).

    Article  Google Scholar 

  51. R. Pethig, Y. Huang, X. B. Wang and J. P. H. Burt, Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes, J. Phys. D: Appl. Phys. 24, 881–888 (1992).

    Article  ADS  Google Scholar 

  52. X-B Wang, Y. Huang, J. P. H. Burt, G. H. Markx and R. Pethig, Selective dielectrophoretic confinement of bioparticles in potential energy wells, J. Phys. D: Appl. Phys. 26, 1278–1285 (1993).

    Article  ADS  Google Scholar 

  53. P. R. C. Gascoyne, J. Noshari, F. F. Becker and R. Pethig, Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells, IEEE Trans. Indus. Appl., 30, 829–834 (1994).

    Article  Google Scholar 

  54. F. F. Becker, X-B. Wang, Y. Huang, R. Pethig, J. Vykoukal and P. R. C. Gascoyne, The removal of human leukaemia cells from blood using interdigitated microelectrodes, J. Phys. D: Appl. Phys. 27, 2659–2662 (1994).

    Article  ADS  Google Scholar 

  55. F. F. Becker, X-B. Wang, Y. Huang, R. Pethig, J. Vykoukal and P. R. C. Gascoyne, Separation of human breast cancer cells from blood by differential dielectric affinity, PNAS. 92, 860–864 (1995).

    Article  ADS  Google Scholar 

  56. X. Wang, X-B. Wang, F. F. Becker and P. R. C. Gascoyne, A theoretical method of electric field analysis for dielectrophoretic electrode arrays using Green’s theorem, J. Phys. D: Appl. Phys., 29, 1649–1660 (1996).

    Article  ADS  Google Scholar 

  57. M. Garcia and D. S. Clague, The 2D electric field above planar sequence of independent strip electrodes, J. Phys. D: Appl. Phys., 33, 1747–1755 (2000).

    Article  ADS  Google Scholar 

  58. E. Liang, R.L. Smith and D.S. Clague, Dielectrophoretic manipulation of finite sized species and the importance of the quadrupolar contribution, Phys. Rev. E, 70, 066617 ( 2004).

    Google Scholar 

  59. D. S. Clague and E. K. Wheeler, Dielectrophoretic manipulation of macro-molecules: The electric field, Phys. Rev. E, 64, 026605 (2001).

    Google Scholar 

  60. H. Morgan, A. G. Izquierdo, D. Bakewell, N. G. Green and A. Ramos, The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series, J. Phys. D: Appl. Phys., 34, 1553–1561 (2001).

    Article  ADS  Google Scholar 

  61. D. E. Chuang, S. Loire and I. Mezić, Closed-form solutions in the electric field analysis for dielectrophoretic and travelling wave interdigitated electrode arrays, J. Phys. D: Appl. Phys.,36,3073–3078 (2003).

    Article  ADS  Google Scholar 

  62. N. G. Green, A. Ramos and H. Morgan, Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method, J. Electrostat., 56, 235–254 (2002).

    Article  Google Scholar 

  63. T. Sun, H. Morgan and N. G. Green, Analytical solutions of ac electrokinetics in interdigitated electrode arrays: electric field, dielectrophoretic and travelling-wave dielectrophoretic forces, Phys. Rev. E., 76, 046610 (2007).

    Google Scholar 

  64. G. H. Markx and R. Pethig, Dielectric separation of cells: continuous separation, Biotech. Bioeng., 45, 337–343 (1995).

    Article  Google Scholar 

  65. D. Holmes and H. Morgan, Cell positioning and sorting using dielectrophoresis, Eur. Cell. Mater., 4, 120–122 (2002).

    Google Scholar 

  66. G. H. Markx, J. Rousselet and R. Pethig, DEP-FFF: field-flow fractionation using non-uniform electric fields, J. Liquid Chromatography Relat. Technol., 20, 2857–2872 (1997).

    Article  Google Scholar 

  67. G. H. Markx, R. Pethig and J. Rousselet, The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation, J. Phys. D: Appl. Phys., 30, 2470–2477 (1997).

    Article  ADS  Google Scholar 

  68. J. Rousselet, G. H. Markx and R. Pethig, Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow-fraction, Colloid. Surface. A: Physicochem. Eng. Aspects, 140, 209–216 (1998).

    Article  Google Scholar 

  69. P. R. C. Gascoyne and J. Vykoukal, Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments, IEEE Proc. 92, 22–42 (2004).

    Article  Google Scholar 

  70. B. G. Hawkins, A. E. Smith, Y. A. Syed and B. J. Kirby. Continuous-Flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields, Anal. Chem. 79, 7291–7300 (2007).

    Article  Google Scholar 

  71. G. Fuhr, W. M. Arnold, R. Hagedorn, T. Müller, W. Benecke, B. Wagner and U. Zimmermann, Levitation, holding and rotation of cells within traps made by high-frequency fields, Biochim. Biophys. Acta, 1108, 215–223 (1992).

    Article  Google Scholar 

  72. T. Müller, A. Gerardino, T. Schnelle, S. G. Shirley, F. Bordoni, G. D. Gasperis, R. Leoni and G. Fuhr, Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces, J. Phys. D: Appl. Phys., 29, 340–349 (1996).

    Article  ADS  Google Scholar 

  73. T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle and G. Fuhr, A 3-D microelectrode system for handling and caging single cells and particles, Biosens. Bioelectron., 14, 247–256 (1999).

    Article  Google Scholar 

  74. T. Schnelle, T. Müller and G. Fuhr, The influence of higher moments on particle behaviour in dielectrophoretic field cages, J. Electrostat., 46, 13–28 (1999).

    Article  Google Scholar 

  75. T. Schnelle, T. Müller and G. Fuhr, Trapping in AC octode field cages, J. Electrostat., 50, 17–29 (2000).

    Article  Google Scholar 

  76. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi and M. Tartagni, A CMOS chip for individual cell manipulation and detection, IEEE J. Solid-State Circ., 38, 2297–2305 (2003).

    Article  Google Scholar 

  77. J. Voldman, R. A. Braff, M. Toner, M. L. Gray and M. A. Schmidt, Holding forces of single-particle dielectrophoretic traps, Biophys. J., 80, 531–541 (2001).

    Article  Google Scholar 

  78. J. Voldman, M. L. Gray, M. Toner and M. A. Schmidt, A microfabricated-based dynamic array cytometer, Anal. Chem.74, 3984–3990 (2002).

    Article  Google Scholar 

  79. J. Voldman, M. Toner, M. L. Gray and M. A. Schmidt, Design and analysis of extruded quadrupolar dielectrophoretic traps, J. Electrostat., 57, 69–90 (2003).

    Article  Google Scholar 

  80. Rosenthal and J. Voldman, Dielectrophoretic traps for single-particle patterning, Biophys. J., 88, 2193–2205 (2005).

    Google Scholar 

  81. B. M. Taff and J. Voldman, A scalable addressable positive-dielectrophoretic cell-sorting array, Anal. Chem., 77, 7976–7983 (2005).

    Article  Google Scholar 

  82. Rosenthal, B. M. Taff and J. Voldman, Quantitative modeling of dielectrophoretic traps, Lab Chip, 6, 508–515 (2006).

    Article  Google Scholar 

  83. J. Voldman, Electrical forces for microscale cell manipulation, Annu. Rev. Biomed. Eng., 8, 425–454 (2006).

    Article  Google Scholar 

  84. R. S. Thomas, H. Morgan and N. G. Green, Negative DEP traps for single cell immobilisation, Lab Chip, 9, 1534–1540 (2009).

    Article  Google Scholar 

  85. Ramos, H. Morgan, N. G. Green and A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, J. Phys. D: Appl. Phys., 31, 2338–2353 (1998).

    Article  ADS  Google Scholar 

  86. D. J. Tritton, Physical fluid dynamics, Oxford University Press, New York (1988).

    Google Scholar 

  87. D. J. Acheson, Elementary fluid dynamics, Oxford University Press, New York (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hywel Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Morgan, H., Sun, T. (2010). AC Electrokinetic Particle Manipulation in Microsystems. In: Kakaç, S., Kosoy, B., Li, D., Pramuanjaroenkij, A. (eds) Microfluidics Based Microsystems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9029-4_23

Download citation

Publish with us

Policies and ethics