Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 690))

Abstract

The pancreas plays a central role in digestion and absorption as well as utilization and storage of energy substrates. As described in Chapter 1, it consists of two structurally distinct but functionally integrated glandular systems, namely the exocrine and endocrine pancreas, both of which arise from an outgrowth of the primitive gut. Secretion by the exocrine pancreas is modulated by neural and hormonal signals, particularly in the form of numerous gastrointestinal peptide hormones (Chey & Chang, 2001). Due to the lack of basal membranes or compartmentalization capsules for different cell types in the pancreas, the islets cells are interspersed within the exocrine acini. Acini located near islets, called peri-insular acini, are composed of larger sized cells possessing larger nuclei and more abundant zymogen granules than acini removed from islets, called tele-insular acini. Some secretory products of the islet cells, such as insulin, interact directly with acinar cells and thereby regulate acinar function (Murakami et al., 1992). The exclusive morphology of the peri-insular acini is reflected in the presence of high insulin concentrations in the region (von Schönfeld et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andralojc KM, Mercalli A, Nowak KW, Albarello L, Calcagno R, Luzi L, Bonifacio E, Doglioni C and Piemonti L. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52:486–493, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bayliss WM and Starling EH. The mechanism of pancreatic secretion. J Physiol 28:325–353, 1902.

    PubMed  CAS  Google Scholar 

  • Beger HG. The pancreas: an integrated textbook of basic science, medicine, and surgery. Blackwell, Oxford, 2008.

    Google Scholar 

  • Berry SM and Fink AS. Insulin inhibits secretin-stimulated pancreatic bicarbonate output by a dose-dependent neurally mediated mechanism. Am J Physiol 270:G163–G170, 1996.

    PubMed  CAS  Google Scholar 

  • Bolender RP. Stereological analysis of the guinea pig pancreas. I. Analytical model and quantitative description of nonstimulated pancreatic exocrine cells. J Cell Biol 61:269–287, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Sivitz MC, Owen OE, Essa-Koumar N, Landon JH. Somatostatin suppresses secretin and pancreatic exocrine secretion. Science 190:163–165, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir S and Sharma A. Pancreatic stem cells. J Pathol 197:519–526, 2002.

    Article  PubMed  Google Scholar 

  • Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T and Sharma A. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5:16–22, 2004.

    Article  PubMed  Google Scholar 

  • Chey WY and Chang T. Neural hormonal regulation of exocrine pancreatic secretion. Pancreatology 1:320–335, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Chey WY, Shay H and Shuman CR. External pancreatic secretion in diabetes mellitus. Ann Intern Med 59:812–821, 1963.

    PubMed  CAS  Google Scholar 

  • Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, Kojima M, Kangawa K, Arima T, Matsuo H, Yada T and Matsukura S. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 51:124–129, 2002.

    Article  PubMed  CAS  Google Scholar 

  • De Vriese C and Delporte C. Ghrelin: a new peptide regulating growth hormone release and food intake. Int J Biochem Cell Biol 40:1420–1424, 2008.

    Article  PubMed  Google Scholar 

  • Domschke S, Domschke W, Rösch W, Konturek SJ, Sprügel W, Mitznegg P, Wünsch E and Demling L. Inhibition by somatostatin of secretin-stimulated pancreatic secretion in man: a study with pure pancreatic juice. Scand J Gastroenterol 12:59–63, 1977.

    PubMed  CAS  Google Scholar 

  • Francis B, Baskin D, Saunders D and Ensinck J. Distribution of somatostatin-14 and somatostatin-28 gastrointestinal-pancreatic cells of rats and humans. Gastroenterology 99:1283–1291, 1990.

    PubMed  CAS  Google Scholar 

  • Githens S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J Pediatr Gastroenterol Nutr 7:486–506, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hanssen LE. Pure synthetic bile salts release immunoreactive secretin in man. Scand J Gastroenterol 15:461–463, 1980

    Article  PubMed  CAS  Google Scholar 

  • Hardt PD, Krauss A, Bretz L, Porsch-Ozcürümez M, Schnell-Kretschmer H, Mäser E, Bretzel RG, Zekhorn T and Klör HU. Pancreatic exocrine function in patients with type 1 and type 2 diabetes mellitus. Acta Diabetol 37:105–110, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Heremans Y, Van De Casteele M, in’t Veld P, Gradwohl G, Serup P, Madsen O, Pipeleers D and Heimberg H. Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159:303–312, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi A, Iwatsuki K, Ren LM, Kuroda T and Chiba S. Dual actions of glucagon: direct stimulation and indirect inhibition of dog pancreatic secretion. Eur J Pharmacol 237:23–30, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Howard-McNatt M, Simon T, Wang Y and Fink AS. Insulin inhibits secretin-induced pancreatic bicarbonate output via cholinergic mechanisms. Pancreas 24:380–385, 2002.

    Article  PubMed  Google Scholar 

  • Iwatsuki N and Petersen OH. Electrical coupling and uncoupling of exocrine acinar cells. J Cell Biol 79:533–545, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Li YX and Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 74:669–677, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kojima N, Hosoda H, Date Y, Nakazato M, Matsuo H and Kangawa K. Ghrelin is a growth hormone-releasing acylated peptide from stomach. Nature 402:565–660, 1999.

    Article  Google Scholar 

  • Korc M, Owerbach D, Quinto C and Rutter WJ. Pancreatic islet-acinar cell interaction: amylase messenger RNA levels are determined by insulin. Science 213:351–353, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Lai KC, Cheng CHK, Ko WH and Leung PS. Ghrelin system in pancreatic AR42J cells: its ligand stimulation evokes calcium signaling through ghrelin receptors. Int J Biochem Cell Biol 37:887–900, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lai KC, Cheng CHK and Leung PS. The ghrelin system in acinar cells: localization, expression, and regulation in the exocrine pancreas. Pancreas 35:e1–e8, 2007.

    Article  PubMed  Google Scholar 

  • Leung PS and Carlsson PO. Tissue renin-angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol 26:155–164, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Leung PS and Ip SP. Pancreatic acinar cell: its role in acute pancreatitis. Int J Biochem Cell Biol 38:1024–1030, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Maechler P, Carobbio S and Rubi B. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol 38:696–709, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Melvin JE, Park K, Richardson L, Schultheis PJ and Shull GE. Mouse down-regulated in adenoma (DRA) is an intestinal Cl–/HCO3 – exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J Biol Chem 274:22855–22861, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Fujita T, Taguchi T, Nonaka Y and Orita K. The blood vascular bed of the human pancreas, with special reference to the insulo-acinar portal system. canning electron microscopy of corrosion casts. Arch Histol Cytol 55:381–395, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa A, Stagner JI and Samols E. Suppressive role of the islet-acinar axis in the perfused rat pancreas. Gastroenterology 105:868–875, 1993.

    PubMed  CAS  Google Scholar 

  • Okabayashi Y, Maddux BA, McDonald AR, Logsdon CD, Williams JA and Goldfine ID. Mechanisms of insulin-induced insulin-receptor downregulation. Decrease of receptor biosynthesis and mRNA levels. Diabetes 38:182–187, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Pandol SJ. Neurohumoral control of exocrine pancreatic secretion. Curr Opin Gastroenterol 20:435–438, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Patel R, Singh J, Yago MD, Vilchez JR, Martínez-Victoria E and Mañas M. Effect of insulin on exocrine pancreatic secretion in healthy and diabetic anaesthetised rats. Mol Cell Biochem 261:105–110, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH. Human Physiology. Blackwell, Oxford, 2007.

    Google Scholar 

  • Petersen OH. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol 448:1–5, 1992.

    PubMed  CAS  Google Scholar 

  • Petersen OH and Ueda N. Pancreatic acinar cells: the role of calcium in stimulus-secretion coupling. J Physiol 254:583–606, 1976.

    PubMed  CAS  Google Scholar 

  • Podolsky DK. Peptide growth factors in the gastrointestinal tract. In LR Johnson (ed), Physiology of the gastrointestinal tract, vol 1, 3rd edn. Raven Press, New York, NY, pp 1–128, 1994.

    Google Scholar 

  • Poulsen JH, Fischer H, Illek B and Machen TE. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 91:5340–5344, 1994

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Williams JA and Kanno T. Potentiation of cholecystokinin-induced exocrine secretion by both exogenous and endogenous insulin in isolated and perfused rat pancreata. J Clin Invest 65:777–782, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Scheele G, Adler G and Kern H. Exocytosis occurs at the lateral plasma membrane of the pancreatic acinar cell during supramaximal secretagogue stimulation. Gastroenterology 92:345–353, 1987.

    PubMed  CAS  Google Scholar 

  • Schlegel W, Raptis S, Harvey RF, Oliver JM, Pfeiffer EF. Inhibition of cholecystokinin-pancreaozymin release by somatostatin. Lancet 2:166–168, 1977.

    Article  PubMed  CAS  Google Scholar 

  • Schuit FC, Huypens P, Heimberg H and Pipeleers DG. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50:1–11, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ and Muallem S. Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127:511–524, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Simon T, Marcus A, Royce CL, Chao F, Mendez T and Fink AS. Hyperglycemia alone does not inhibit secretin-induced pancreatic bicarbonate secretion. Pancreas 20:277–281, 2002.

    Article  Google Scholar 

  • Steiner DF and Rubenstein AH. Proinsulin C-peptide-biological activity. Science 277:531–532, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Utzschneider KM, Carr DB, Zraika S, Udayasankar J, Gerchman F, Knopp RH and Kahn SE. Plasma pancreatic polypeptide levels are associated with differences in body fat distribution in human subjects. Diabetologia 50:439–442, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Tsang SW, Cheng CHK and Leung PS. The role of pancreatic renin-angiotensin system in acinar digestive enzyme secretion and in acute pancreatitis. Regul Pept 119:213–219, 2004.

    Article  PubMed  CAS  Google Scholar 

  • von Schönfeld J, Goebell H and Müller MK. The islet-acinar axis of the pancreas. Int J Pancreatol 16:131–140, 1994.

    Google Scholar 

  • Unger RH, Dobbs RS and Orci L. Insulin, glucagon and somatostatin secretion in the regulation of metabolism. Annu Rev Physiol 40:307–343, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Wahren J and Felig P. Influence of somatostatin on carbohydrate disposal and absorption in diabetes mellitus. Lancet 2:1213–1216, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Wäsle B and Edwardson JM. The regulation of exocytosis in the pancreatic acinar cell. Cell Signal 14:191–197, 2002.

    Article  PubMed  Google Scholar 

  • Williams JA and Goldfine ID. The insulin-pancreatic acinar axis. Diabetes 34:980–986, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Wookey PJ, Lutz TA and Andrikopoulos S. Amylin in the periphery: an updated mini-review. ScientificWorldJournal 6:1642–1652, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wong PF and Cheung WT. Immunohistochemical colocalization of type II angiotensin receptors with somatostatin in rat pancreas. Regul Pept 117:195–205, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chen M, Chen X, Segura BJ and Mulholland MW. Inhibition of pancreatic protein secretion by ghrelin in the rat. J Physiol 537:231–136, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Sing Leung PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leung, P.S. (2010). Physiology of the Pancreas. In: The Renin-Angiotensin System: Current Research Progress in The Pancreas. Advances in Experimental Medicine and Biology, vol 690. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9060-7_2

Download citation

Publish with us

Policies and ethics