Skip to main content

Heart

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Coronary heart disease and chronic heart failure are common and have an increasing frequency. Although revascularisation procedures and conventional drug therapy may delay ventricular remodelling, there is no basic therapeutic regime available for preventing or even reversing this process. Chronic coronary artery disease and heart failure impair quality of life and are associated with subsequent worsening of the cardiac pump function. Numerous studies within the past few years have been demonstrated, that cardiac stem cell therapy has to be considered a safe therapeutic procedure in heart disease, when destroyed and/or compromised heart muscle must be regenerated. Different autologous or allogenic progenitor cell populations have been addressed for cardiac cell therapy. This kind of cell therapy with autologous bone marrow cells is completely justified ethical, except for the small numbers of patients with direct or indirect bone marrow disease (e.g. myeloma, leukaemic infiltration) in whom there would be intrinsic lesions of mononuclear cells. Several preclinical as well as clinical trials have shown that transplantation of autologous bone marrow stem cells or precursor cells improve cardiac function after myocardial infarction and in chronic ischemic heart disease. The age of infarction seems to be irrelevant to regenerative potency of stem cells, since stem cell therapy in old infarctions (many years old) is almost equally effective in comparison to previous infarcts. Further indications are non-ischemic and diabetic cardiomyopathy (dilated cardiomyopathy) as well as heart failure due to an infectious cause like Chagas heart disease. Further clinical development is aimed to modify cardiac inflammation and cardiogenesis by stem cell modification and to test other stem cell sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, MR, Henrikson, CA, Tung, L, Chang, MG, Aon, M, Xue, T, Li, Ronald A, O’ R Brain Marban, E (2005) Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circulation Research 97: 159–167.

    CAS  PubMed  Google Scholar 

  • Ahmadi, H, Baharvand, H, Ashtiani, SK, Soleimani, M, Sadeghian, H, Ardekani, JM, Mehrjerdi, NZ, Kouhkan, A, Namiri, M, Madani-Civi, M, Fattahi, F, Shahverdi, A, Dizaji, AV (2007) Safety analysis and improved cardiac function following local autologous transplantation of CD133(+) enriched bone marrow cells after myocardial infarction. Current neurovascular research 4: 153–160.

    PubMed  Google Scholar 

  • Alhadlaq, A, Mao, JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem cells and development 13: 436–448.

    CAS  PubMed  Google Scholar 

  • Allgöwer, M (1956) The cellular basis of wound repair. Charles C. Thomas.:Springfield IL.

    Google Scholar 

  • Amado, LC, Saliaris, AP, Schuleri, KH, St John, M, Xie, JS, Cattaneo, S, Durand, DJ, Fitton, T, Kuang, JQ, Stewart, G, Lehrke, S, Baumgartner, WW, Martin, BJ, Heldman, AW, Hare, JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America 102: 11474–11479.

    CAS  PubMed  Google Scholar 

  • Anversa, P, Palackal, T, Sonnenblick, EH, Olivetti, G, Capasso, JM (1990) Hypertensive cardiomyopathy. Myocyte nuclei hyperplasia in the mammalian rat heart. The Journal of clinical investigation 85: 994–997.

    CAS  PubMed  Google Scholar 

  • Aoi, T, Yae, K, Nakagawa, M, Ichisaka, T, Okita, K, Takahashi, K, Chiba, T, Yamanaka, S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science New York, NY 321: 699–702.

    CAS  Google Scholar 

  • Aoki, J, Serruys, PW, van Beusekom, H, Ong, AT, McFadden, EP, Sianos, G, van der Giessen, WJ, Regar, E, de Feyter, PJ, Davis, HR, Rowland, S, Kutryk, MJ (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. Journal of the American College of Cardiology 45: 1574–1579.

    CAS  PubMed  Google Scholar 

  • Arsic, N, Mamaeva, D, Lamb, NJ, Fernandez, A (2008) Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages. Experimental cell research 314: 1266–1280.

    CAS  PubMed  Google Scholar 

  • Asahara, T, Murohara, T, Sullivan, A, Silver, M, van der Zee, R, Li, T, Witzenbichler, B, Schatteman, G, Isner, JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science New York, NY 275: 964–967.

    CAS  Google Scholar 

  • Assmus, B, Honold, J, Schachinger, V, Britten, MB, Fischer-Rasokat, U, Lehmann, R, Teupe, C, Pistorius, K, Martin, H, Abolmaali, ND, Tonn, T, Dimmeler, S, Zeiher, AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. The New England journal of medicine 355: 1222–1232.

    CAS  PubMed  Google Scholar 

  • Behfar, A, Perez-Terzic, C, Faustino, RS, Arrell, DK, Hodgson, DM, Yamada, S, Puceat, M, Niederlander, N, Alekseev, AE, Zingman, LV, Terzic, A (2007) Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. The Journal of experimental medicine 204: 405–420.

    CAS  PubMed  Google Scholar 

  • Beltrami, AP, Barlucchi, L, Torella, D, Baker, M, Limana, F, Chimenti, S, Kasahara, H, Rota, M, Musso, E, Urbanek, K, Leri, A, Kajstura, J, Nadal-Ginard, B, Anversa, P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776.

    CAS  PubMed  Google Scholar 

  • Beltrami, AP, Urbanek, K, Kajstura, J, Yan, SM, Finato, N, Bussani, R, Nadal-Ginard, B, Silvestri, F, Leri, A, Beltrami, CA, Anversa, P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. The New England journal of medicine 344: 1750–1757.

    CAS  PubMed  Google Scholar 

  • Bergmann, O, Bhardwaj, RD, Bernard, S, Zdunek, S, Barnabe-Heider, F, Walsh, S, Zupicich, J, Alkass, K, Buchholz, BA, Druid, H, Jovinge, S, Frisen, J (2009) Evidence for cardiomyocyte renewal in humans. Science New York, NY 324: 98–102.

    CAS  Google Scholar 

  • Blum, B, Benvenisty, N (2008) The tumorigenicity of human embryonic stem cells. Advances in cancer research 100: 133–158.

    PubMed  Google Scholar 

  • Buckingham, M, Montarras, D (2008) Skeletal muscle stem cells. Current opinion in genetics & development 18: 330–336.

    CAS  Google Scholar 

  • Cebotari, S, Lichtenberg, A, Tudorache, I, Hilfiker, A, Mertsching, H, Leyh, R, Breymann, T, Kallenbach, K, Maniuc, L, Batrinac, A, Repin, O, Maliga, O, Ciubotaru, A, Haverich, A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114: I132–137.

    PubMed  Google Scholar 

  • Chachques, JC (2009) Cellular cardiac regenerative therapy in which patients? Expert review of cardiovascular therapy 7: 911–919.

    CAS  PubMed  Google Scholar 

  • Choi, YH, Stamm, C, Hammer, PE, Kwaku, KF, Marler, JJ, Friehs, I, Jones, M, Rader, CM, Roy, N, Eddy, MT, Triedman, JK, Walsh, EP, McGowan, FX, Jr., del Nido, PJ, Cowan, DB (2006) Cardiac conduction through engineered tissue. The American journal of pathology 169: 72–85.

    CAS  PubMed  Google Scholar 

  • Christman, KL, Lee, RJ (2006) Biomaterials for the treatment of myocardial infarction. Journal of the American College of Cardiology 48: 907–913.

    CAS  PubMed  Google Scholar 

  • Dai, W, Hale, SL, Martin, BJ, Kuang, JQ, Dow, JS, Wold, LE, Kloner, RA (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112: 214–223.

    PubMed  Google Scholar 

  • Dhein, S, Garbade, J, Rouabah, D, Abraham, G, Ungemach, FR, Schneider, K, Ullmann, C, Aupperle, H, Gummert, JF, Mohr, FW (2006) Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of non-ischemic heart failure. Journal of cardiothoracic surgery 1: 17.

    PubMed  Google Scholar 

  • Draper, JS, Pigott, C, Thomson, JA, Andrews, PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. Journal of anatomy 200: 249–258.

    CAS  PubMed  Google Scholar 

  • Ellison, GM, Torella, D, Karakikes, I, Nadal-Ginard, B (2007) Myocyte death and renewal: ­modern concepts of cardiac cellular homeostasis. Nature clinical practice 4 Suppl 1: S52–59.

    CAS  PubMed  Google Scholar 

  • Elmadbouh, I, Haider, H, Jiang, S, Idris, NM, Lu, G, Ashraf, M (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of molecular and cellular cardiology 42: 792–803.

    CAS  PubMed  Google Scholar 

  • Erbs, S, Linke, A, Adams, V, Lenk, K, Thiele, H, Diederich, KW, Emmrich, F, Kluge, R, Kendziorra, K, Sabri, O, Schuler, G, Hambrecht, R (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circulation research 97(8): 756–762.

    CAS  PubMed  Google Scholar 

  • Eschenhagen, T, Zimmermann, WH (2005) Engineering myocardial tissue. Circulation research 97: 1220–1231.

    CAS  PubMed  Google Scholar 

  • Ferrari, G, Cusella-De Angelis, G, Coletta, M, Paolucci, E, Stornaiuolo, A, Cossu, G, Mavilio, F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science New York, NY 279: 1528–1530.

    CAS  Google Scholar 

  • Fouts, K, Fernandes, B, Mal, N, Liu, J, Laurita, KR (2006) Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm 3: 452–461.

    PubMed  Google Scholar 

  • Fuchs, E, Tumbar, T, Guasch, G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116: 769–778.

    CAS  PubMed  Google Scholar 

  • Fuchs, S, Baffour, R, Zhou, YF, Shou, M, Pierre, A, Tio, FO, Weissman, NJ, Leon, MB, Epstein, SE, Kornowski, R (2001) Transendocardial delivery of autologous bone marrow enhances ­collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. Journal of the American College of Cardiology 37: 1726–1732.

    CAS  PubMed  Google Scholar 

  • Furlani, D, Ugurlucan, M, Ong, L, Bieback, K, Pittermann, E, Westien, I, Wang, W, Yerebakan, C, Li, W, Gaebel, R, Li, RK, Vollmar, B, Steinhoff, G, Ma, N (2009) Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvascular research 77: 370–376.

    CAS  PubMed  Google Scholar 

  • Galinanes, M, Loubani, M, Davies, J, Chin, D, Pasi, J, Bell, PR (2004) Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell transplantation 13: 7–13.

    PubMed  Google Scholar 

  • Ge, J, Li, Y, Qian, J, Shi, J, Wang, Q, Niu, Y, Fan, B, Liu, X, Zhang, S, Sun, A, Zou, Y (2006) Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 92(12): 1764–1767.

    PubMed  Google Scholar 

  • Gill, M, Dias, S, Hattori, K, Rivera, ML, Hicklin, D, Witte, L, Girardi, L, Yurt, R, Himel, H, Rafii, S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation research 88: 167–174.

    CAS  PubMed  Google Scholar 

  • Goodell, MA, Jackson, KA, Majka, SM, Mi, T, Wang, H, Pocius, J, Hartley, CJ, Majesky, MW, Entman, ML, Michael, LH, Hirschi, KK (2001) Stem cell plasticity in muscle and bone marrow. Annals of the New York Academy of Sciences 938: 208-218; discussion 218–220

    CAS  PubMed  Google Scholar 

  • Gregg, F (1963) Blodd supply to the heart. In: Handbook of physiology, American physiological society: Washington DC, pp. 1517–1584.

    Google Scholar 

  • Hendrikx, M, Hensen, K, Clijsters, C, Jongen, H, Koninckx, R, Bijnens, E, Ingels, M, Jacobs, A, Geukens, R, Dendale, P, Vijgen, J, Dilling, D, Steels, P, Mees, U, Rummens, JL (2006) Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 114(1 Suppl):I101–I107.

    Google Scholar 

  • Herreros, J, Prosper, F, Perez, A, Gavira, JJ, Garcia-Velloso, MJ, Barba, J, Sanchez, PL, Canizo, C, Rabago, G, Marti-Climent, JM, Hernandez, M, Lopez-Holgado, N, Gonzalez-Santos, JM, Martin-Luengo, C, Alegria, E (2003) Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European heart journal 24: 2012–2020.

    PubMed  Google Scholar 

  • Hoerstrup, SP, Kadner, A, Melnitchouk, S, Trojan, A, Eid, K, Tracy, J, Sodian, R, Visjager, JF, Kolb, SA, Grunenfelder, J, Zund, G, Turina, MI (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106: I143–150.

    PubMed  Google Scholar 

  • Itabashi, Y, Miyoshi, S, Yuasa, S, Fujita, J, Shimizu, T, Okano, T, Fukuda, K, Ogawa, S (2005) Analysis of the electrophysiological properties and arrhythmias in directly contacted skeletal and cardiac muscle cell sheets. Cardiovascular research 67: 561–570.

    CAS  PubMed  Google Scholar 

  • Iwasaki, H, Kawamoto, A, Ishikawa, M, Oyamada, A, Nakamori, S, Nishimura, H, Sadamoto, K, Horii, M, Matsumoto, T, Murasawa, S, Shibata, T, Suehiro, S, Asahara, T (2006) Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113: 1311–1325.

    CAS  PubMed  Google Scholar 

  • Janssens, S, Dubois, C, Bogaert, J, Theunissen, K, Deroose, C, Desmet, W, Kalantzi, M, Herbots, L, Sinnaeve, P, Dens, J, Maertens, J, Rademakers, F, Dymarkowski, S, Gheysens, O, Van Cleemput, J, Bormans, G, Nuyts, J, Belmans, A, Mortelmans, L, Boogaerts, M, Van de Werf, F (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367: 113–121.

    PubMed  Google Scholar 

  • Jiang, Y, Jahagirdar, BN, Reinhardt, RL, Schwartz, RE, Keene, CD, Ortiz-Gonzalez, XR, Reyes, M, Lenvik, T, Lund, T, Blackstad, M, Du, J, Aldrich, S, Lisberg, A, Low, WC, Largaespada, DA, Verfaillie, CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.

    CAS  PubMed  Google Scholar 

  • Joggerst, SJ, Hatzopoulos, AK (2009) Stem cell therapy for cardiac repair: benefits and barriers. Expert reviews in molecular medicine 11: e20.

    PubMed  Google Scholar 

  • Jujo, K, Ii, M, Losordo, DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of molecular and cellular cardiology 45: 530–544.

    CAS  PubMed  Google Scholar 

  • Kaminski, A, Steinhoff, G (2008) Current status of intramyocardial bone marrow stem cell transplantation. Seminars in thoracic and cardiovascular surgery 20: 119–125.

    PubMed  Google Scholar 

  • Kamota, T, Li, TS, Morikage, N, Murakami, M, Ohshima, M, Kubo, M, Kobayashi, T, Mikamo, A, Ikeda, Y, Matsuzaki, M, Hamano, K (2009) Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. Journal of the American College of Cardiology 53: 1814–1822.

    CAS  PubMed  Google Scholar 

  • Karpov, RS, Popov, SV, Markov, VA, Suslova, TE, Ryabov, VV, Poponina, YS, Krylov, AL, Sazonova, SV (2005) Autologous mononuclear bone marrow cells during reparative regeneratrion after acute myocardial infarction. Bull Exp Biol Med 140: 640–643.

    CAS  PubMed  Google Scholar 

  • Klein, HM, Ghodsizad, A, Marktanner, R, Poll, L, Voelkel, T, Mohammad Hasani, MR, Piechaczek, C, Feifel, N, Stockschlaeder, M, Burchardt, ER, Kar, BJ, Gregoric, I, Gams, E (2007) Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. The heart surgery forum 10: E66–E69.

    CAS  PubMed  Google Scholar 

  • Kocher, AA, Schuster, MD, Szabolcs, MJ, Takuma, S, Burkhoff, D, Wang, J, Homma, S, Edwards, NM, Itescu, S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature medicine 7: 430–436.

    CAS  PubMed  Google Scholar 

  • Krause, DS, Theise, ND, Collector, MI, Henegariu, O, Hwang, S, Gardner, R, Neutzel, S, Sharkis, SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105: 369–377.

    CAS  PubMed  Google Scholar 

  • Kutschka, I, Chen, IY, Kofidis, T, Arai, T, von Degenfeld, G, Sheikh, AY, Hendry, SL, Pearl, J, Hoyt, G, Sista, R, Yang, PC, Blau, HM, Gambhir, SS, Robbins, RC (2006) Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114: I167–173.

    PubMed  Google Scholar 

  • Leobon, B, Garcin, I, Menasche, P, Vilquin, JT, Audinat, E, Charpak, S (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proceedings of the National Academy of Sciences of the United States of America 100: 7808–7811.

    CAS  PubMed  Google Scholar 

  • Li, JH, Zhang, N, Wang, JA (2008) Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. Journal of endocrinological investigation 31: 103–110.

    CAS  PubMed  Google Scholar 

  • Losordo, DW, Schatz, RA, White, CJ, Udelson, JE, Veereshwarayya, V, Durgin, M, Poh, KK, Weinstein, R, Kearney, M, Chaudhry, M, Burg, A, Eaton, L, Heyd, L, Thorne, T, Shturman, L, Hoffmeister, P, Story, K, Zak, V, Dowling, D, Traverse, JH, Olson, RE, Flanagan, J, Sodano, D, Murayama, T, Kawamoto, A, Kusano, KF, Wollins, J, Welt, F, Shah, P, Soukas, P, Asahara, T, Henry, TD (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115: 3165–3172.

    PubMed  Google Scholar 

  • Lunde, K, Solheim, S, Aakhus, S, Arnesen, H, Abdelnoor, M, Forfang, K (2005) Autologous stem cell transplantation in acute myocardial infarction: The ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J 39: 150–158.

    CAS  PubMed  Google Scholar 

  • Lunde, K, Solheim, S, Aakhus, S, Arnesen, H, Abdelnoor, M, Egeland, T, Endresen, K, Ilebekk, A, Mangschau, A, Fjeld, JG, Smith, HJ, Taraldsrud, E, Grøgaard, HK, Bjørnerheim, R, Brekke, M, Müller, C, Hopp, E, Ragnarsson, A, Brinchmann, JE, Forfang, K (2006) Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England Journal of Medicine 355(12): 1199–1209.

    PubMed  Google Scholar 

  • Ly, HQ, Nattel, S (2009) Stem cells are not proarrhythmic: letting the genie out of the bottle. Circulation 119: 1824–1831.

    PubMed  Google Scholar 

  • Ma, N, Ladilov, Y, Kaminski, A, Piechaczek, C, Choi, YH, Li, W, Steinhoff, G, Stamm, C (2006) Umbilical cord blood cell transplantation for myocardial regeneration. Transplantation proceedings 38: 771–773.

    CAS  PubMed  Google Scholar 

  • Macia, E, Boyden, PA (2009) Stem cell therapy is proarrhythmic. Circulation 119: 1814–1823.

    PubMed  Google Scholar 

  • Makino, S, Fukuda, K, Miyoshi, S, Konishi, F, Kodama, H, Pan, J, Sano, M, Takahashi, T, Hori, S, Abe, H, Hata, J, Umezawa, A, Ogawa, S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of clinical investigation 103: 697–705.

    CAS  PubMed  Google Scholar 

  • Menasche, P, Alfieri, O, Janssens, S, McKenna, W, Reichenspurner, H, Trinquart, L, Vilquin, JT, Marolleau, JP, Seymour, B, Larghero, J, Lake, S, Chatellier, G, Solomon, S, Desnos, M, Hagege, AA (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117: 1189–1200.

    PubMed  Google Scholar 

  • Menasche, P, Hagege, AA, Scorsin, M, Pouzet, B, Desnos, M, Duboc, D, Schwartz, K, Vilquin, JT, Marolleau, JP (2001) Myoblast transplantation for heart failure. Lancet 357: 279–280.

    CAS  PubMed  Google Scholar 

  • Menasche, P, Hagege, AA, Vilquin, JT, Desnos, M, Abergel, E, Pouzet, B, Bel, A, Sarateanu, S, Scorsin, M, Schwartz, K, Bruneval, P, Benbunan, M, Marolleau, JP, Duboc, D (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology 41: 1078–1083.

    PubMed  Google Scholar 

  • Mocini, D, Staibano, M, Mele, L, Giannantoni, P, Menichella, G, Colivicchi, F, Sordini, P, Salera, P, Tubaro, M, Santini, M (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. The American Journal of Heart 151(1): 192–197.

    CAS  PubMed  Google Scholar 

  • Min, JY, Yang, Y, Converso, KL, Liu, L, Huang, Q, Morgan, JP, Xiao, YF (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. Journal of Applied Physiology 92: 288–296.

    PubMed  Google Scholar 

  • Mouquet, F, Pfister, O, Jain, M, Oikonomopoulos, A, Ngoy, S, Summer, R, Fine, A, Liao, R (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circulation research 97: 1090–1092.

    CAS  PubMed  Google Scholar 

  • Nygren, JM, Jovinge, S, Breitbach, M, Sawen, P, Roll, W, Hescheler, J, Taneera, J, Fleischmann, BK, Jacobsen, SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature medicine 10: 494–501.

    CAS  PubMed  Google Scholar 

  • Odorico, JS, Kaufman, DS, Thomson, JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem cells (Dayton, Ohio) 19: 193-204.

    CAS  Google Scholar 

  • Oh, H, Bradfute, SB, Gallardo, TD, Nakamura, T, Gaussin, V, Mishina, Y, Pocius, J, Michael, LH, Behringer, RR, Garry, DJ, Entman, ML, Schneider, MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America 100: 12313–12318.

    CAS  PubMed  Google Scholar 

  • Olgunturk, R, Kula, S, Sucak, GT, Ozdogan, ME, Erer, D, Saygili, A (2009) Peripheric stem cell transplantation in children with dilated cardiomyopathy: Preliminary report of first two cases. Pediatric transplantation.

    Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001 Apr;410(6829):701–705.

    CAS  PubMed  Google Scholar 

  • Pagani, FD, DerSimonian, H, Zawadzka, A, Wetzel, K, Edge, AS, Jacoby, DB, Dinsmore, JH, Wright, S, Aretz, TH, Eisen, HJ, Aaronson, KD (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology 41: 879–888.

    PubMed  Google Scholar 

  • Patel, AN, Geffner, L, Vina, RF, Saslavsky, J, Urschel, HC, Jr., Kormos, R, Benetti, F (2005) Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. The Journal of thoracic and cardiovascular surgery 130: 1631–1638.

    PubMed  Google Scholar 

  • Perin, EC, Dohmann, HF, Borojevic, R, Silva, SA, Sousa, AL, Mesquita, CT, Rossi, MI, Carvalho, AC, Dutra, HS, Dohmann, HJ, Silva, GV, Belem, L, Vivacqua, R, Rangel, FO, Esporcatte, R, Geng, YJ, Vaughn, WK, Assad, JA, Mesquita, ET, Willerson, JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294–2302.

    PubMed  Google Scholar 

  • Perin, EC, Dohmann, HF, Borojevic, R, Silva, SA, Sousa, AL, Silva, GV, Mesquita, CT, Belém, L, Vaughn, WK, Rangel, FO, Assad, JA, Carvalho, AC, Branco, RV, Rossi, MI, Dohmann, HJ, Willerson, JT (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110(11 Suppl 1):II213–II218.

    PubMed  Google Scholar 

  • Pfeffer, MA, Braunwald, E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81: 1161–1172.

    CAS  PubMed  Google Scholar 

  • Pompilio, G, Steinhoff, G, Liebold, A, Pesce, M, Alamanni, F, Capogrossi, MC, Biglioli, P (2008) Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results. The Thoracic and cardiovascular surgeon 56: 71–76.

    CAS  PubMed  Google Scholar 

  • Quaini, F, Urbanek, K, Graiani, G, Lagrasta, C, Maestri, R, Monica, M, Boni, A, Ferraro, F, Delsignore, R, Tasca, G, Leri, A, Kajstura, J, Quaini, E, Anversa, P (2004) The regenerative potential of the human heart. International journal of cardiology 95 Suppl 1: S26–28.

    PubMed  Google Scholar 

  • Reinecke, H, Poppa, V, Murry, CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. Journal of molecular and cellular cardiology 34: 241–249.

    CAS  PubMed  Google Scholar 

  • Ren, G, Michael, LH, Entman, ML, Frangogiannis, NG (2002) Morphological characteristics of the microvasculature in healing myocardial infarcts. Journal of Histochemistry and Cytochemistry 50: 71–79.

    CAS  PubMed  Google Scholar 

  • Renault, MA, Losordo, DW (2007) Therapeutic myocardial angiogenesis. Microvascular research 74: 159–171.

    CAS  PubMed  Google Scholar 

  • Reyes, M, Lund, T, Lenvik, T, Aguiar, D, Koodie, L, Verfaillie, CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98: 2615–2625.

    CAS  PubMed  Google Scholar 

  • Ruhparwar, A, Tebbenjohanns, J, Niehaus, M, Mengel, M, Irtel, T, Kofidis, T, Pichlmaier, AM, Haverich, A (2002) Transplanted fetal cardiomyocytes as cardiac pacemaker. European Journal of Cardio-Thoracic Surgery 21: 853–857.

    PubMed  Google Scholar 

  • Schachinger, V, Erbs, S, Elsasser, A, Haberbosch, W, Hambrecht, R, Holschermann, H, Yu, J, Corti, R, Mathey, DG, Hamm, CW, Suselbeck, T, Assmus, B, Tonn, T, Dimmeler, S, Zeiher, AM (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. The New England journal of medicine 355: 1210–1221.

    CAS  PubMed  Google Scholar 

  • Seth, S, Narang, R, Bhargava, B, Ray, R, Mohanty, S, Gulati, G, Kumar, L, Reddy, KS, Venugopal, P (2006) Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial. Journal of the American College of Cardiology 48: 2350–2351.

    PubMed  Google Scholar 

  • Shafy, A, Lavergne, T, Latremouille, C, Cortes-Morichetti, M, Carpentier, A, Chachques, JC (2009) Association of electrostimulation with cell transplantation in ischemic heart disease. The Journal of thoracic and cardiovascular surgery 138: 994–1001.

    PubMed  Google Scholar 

  • Shi, Q, Rafii, S, Wu, MH, Wijelath, ES, Yu, C, Ishida, A, Fujita, Y, Kothari, S, Mohle, R, Sauvage, LR, Moore, MA, Storb, RF, Hammond, WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92: 362–367.

    CAS  PubMed  Google Scholar 

  • Shimizu, T, Yamato, M, Isoi, Y, Akutsu, T, Setomaru, T, Abe, K, Kikuchi, A, Umezu, M, Okano, T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circulation research 90: e40.

    CAS  PubMed  Google Scholar 

  • Shinoka, T, Breuer, C (2008) Tissue-engineered blood vessels in pediatric cardiac surgery. The Yale journal of biology and medicine 81: 161–166.

    PubMed  Google Scholar 

  • Shinoka, T, Breuer, CK, Tanel, RE, Zund, G, Miura, T, Ma, PX, Langer, R, Vacanti, JP, Mayer, JE, Jr. (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. The Annals of thoracic surgery 60: S513–516.

    CAS  PubMed  Google Scholar 

  • Shinoka, T, Matsumura, K, Hibino, N, Naito, Y, Murata, A, Kosaka, Y, Kurosawa, H (2003) [Clinical practice of transplantation of regenerated blood vessels using bone marrow cells]. Nihon Naika Gakkai zasshi 92: 1776–1780.

    PubMed  Google Scholar 

  • Shintani, S, Murohara, T, Ikeda, H, Ueno, T, Honma, T, Katoh, A, Sasaki, K, Shimada, T, Oike, Y, Imaizumi, T (2001) Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779.

    CAS  PubMed  Google Scholar 

  • Silverman, HS, Pfeifer, MP (1987) Relation between use of anti-inflammatory agents and left ventricular free wall rupture during acute myocardial infarction. The American journal of cardiology 59: 363–364.

    CAS  PubMed  Google Scholar 

  • Soares, MB, Garcia, S, Campos de Carvalho, AC, Ribeiro dos Santos, R (2007) Cellular therapy in Chagas’ disease: potential applications in patients with chronic cardiomyopathy. Regenerative medicine 2: 257–264.

    PubMed  Google Scholar 

  • Soeki, T, Tamura, Y, Shinohara, H, Tanaka, H, Bando, K, Fukuda, N (2000) Serial changes in serum VEGF and HGF in patients with acute myocardial infarction. Cardiology 93: 168–174.

    CAS  PubMed  Google Scholar 

  • Stamm, C, Kleine, HD, Choi, YH, Dunkelmann, S, Lauffs, JA, Lorenzen, B, David, A, Liebold, A, Nienaber, C, Zurakowski, D, Freund, M, Steinhoff, G (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. The Journal of thoracic and cardiovascular surgery 133: 717–725.

    PubMed  Google Scholar 

  • Stamm, C, Westphal, B, Kleine, HD, Petzsch, M, Kittner, C, Klinge, H, Schumichen, C, Nienaber, CA, Freund, M, Steinhoff, G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45–46.

    PubMed  Google Scholar 

  • Steinhoff, G, Stock, U, Karim, N, Mertsching, H, Timke, A, Meliss, RR, Pethig, K, Haverich, A, Bader, A (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102: III50–55.

    CAS  PubMed  Google Scholar 

  • Strauer, BE (1979) Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. The American journal of cardiology 44: 730–740.

    CAS  PubMed  Google Scholar 

  • Strauer, BE, Brehm, M, Schannwell, CM (2008) The therapeutic potential of stem cells in heart disease. Cell proliferation 41 Suppl 1: 126–145.

    PubMed  Google Scholar 

  • Strauer, BE, Brehm, M, Zeus, T, Bartsch, T, Schannwell, C, Antke, C, Sorg, RV, Kogler, G, Wernet, P, Muller, HW, Kostering, M (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. Journal of the American College of Cardiology 46: 1651–1658.

    PubMed  Google Scholar 

  • Strauer, BE, Brehm, M, Zeus, T, Gattermann, N, Hernandez, A, Sorg, RV, Kogler, G, Wernet, P (2001) [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Deutsche medizinische Wochenschrift (1946) 126: 932–938.

    CAS  Google Scholar 

  • Strauer, BE, Brehm, M, Zeus, T, Kostering, M, Hernandez, A, Sorg, RV, Kogler, G, Wernet, P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918.

    PubMed  Google Scholar 

  • Strauer, BE, Kornowski, R (2003) Stem cell therapy in perspective. Circulation 107: 929–934.

    PubMed  Google Scholar 

  • Strauer, BE, Ott, G, Schannwell, CM, Brehm, M (2009) Bone marrow cells to improve ventricular function. Heart (British Cardiac Society) 95: 98–99.

    Google Scholar 

  • Sussman, M (2001) Cardiovascular biology. Hearts and bones. Nature 410: 640–641.

    CAS  PubMed  Google Scholar 

  • Szilvassy, SJ, Bass, MJ, Van Zant, G, Grimes, B (1999) Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by Ex vivo expansion. Blood 93: 1557–1566.

    CAS  PubMed  Google Scholar 

  • Takahashi, K, Okita, K, Nakagawa, M, Yamanaka, S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nature protocols 2: 3081–3089.

    CAS  PubMed  Google Scholar 

  • Toma, C, Pittenger, MF, Cahill, KS, Byrne, BJ, Kessler, PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93-98.

    PubMed  Google Scholar 

  • Torella, D, Ellison, GM, Mendez-Ferrer, S, Ibanez, B, Nadal-Ginard, B (2006) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nature clinical practice 3 Suppl 1: S8–13.

    CAS  PubMed  Google Scholar 

  • Tse, HF, Yiu, KH, Lau, CP (2007) Bone marrow stem cell therapy for myocardial angiogenesis. Current vascular pharmacology 5: 103–112.

    CAS  PubMed  Google Scholar 

  • Urbanek, K, Torella, D, Sheikh, F, De Angelis, A, Nurzynska, D, Silvestri, F, Beltrami, CA, Bussani, R, Beltrami, AP, Quaini, F, Bolli, R, Leri, A, Kajstura, J, Anversa, P (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America 102: 8692–8697.

    CAS  PubMed  Google Scholar 

  • van Laake, LW, Passier, R, Doevendans, PA, Mummery, CL (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circulation research 102: 1008–1010.

    PubMed  Google Scholar 

  • Vilas-Boas, F, Feitosa, GS, Soares, MB, Mota, A, Pinho-Filho, JA, Almeida, AJ, Andrade, MV, Carvalho, HG, Dourado-Oliveira, A, Ribeiro-dos-Santos, R (2006) [Early results of bone ­marrow cell transplantation to the myocardium of patients with heart failure due to Chagas disease]. Arquivos brasileiros de cardiologia 87: 159–166.

    PubMed  Google Scholar 

  • Villa, A, Sanchez, PL, Fernandez-Aviles, F (2007) Ventricular arrhythmias following intracoronary bone marrow stem cell transplantation. Europace 9: 1222–1223.

    PubMed  Google Scholar 

  • Wollert, KC, Meyer, GP, Lotz, J, Ringes-Lichtenberg, S, Lippolt, P, Breidenbach, C, Fichtner, S, Korte, T, Hornig, B, Messinger, D, Arseniev, L, Hertenstein, B, Ganser, A, Drexler, H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364: 141–148.

    PubMed  Google Scholar 

  • Yoon, YS, Park, JS, Tkebuchava, T, Luedeman, C, Losordo, DW (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation 109: 3154–3157.

    PubMed  Google Scholar 

  • Yousef, M, Schannwell, CM, Kostering, M, Zeus, T, Brehm, M, Strauer, BE (2009) The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. Journal of the American College of Cardiology 53: 2262–2269.

    PubMed  Google Scholar 

  • Zhang, N, Li, J, Luo, R, Jiang, J, Wang, JA (2008) Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Experimental and Clinical Endocrinology & Diabetes 116: 104–111.

    CAS  Google Scholar 

  • Zhao, Q, Sun, Y, Xia, L, Chen, A, Wang, Z (2008) Randomized study of mononuclear bone marrow cell transplantation in patients with coronary surgery. The Annals of thoracic surgery 86: 1833–1840.

    PubMed  Google Scholar 

  • Zimmermann, WH, Melnychenko, I, Wasmeier, G, Didie, M, Naito, H, Nixdorff, U, Hess, A, Budinsky, L, Brune, K, Michaelis, B, Dhein, S, Schwoerer, A, Ehmke, H, Eschenhagen, T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature medicine 12: 452–458.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustav Steinhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Steinhoff, G., Strauer, B.E. (2011). Heart. In: Steinhoff, G. (eds) Regenerative Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9075-1_32

Download citation

Publish with us

Policies and ethics