Skip to main content

Cryopreservation

  • Chapter
  • First Online:
Essentials of Tissue Banking

Abstract

“Cryopreservation” is sometimes said to provide “viable” tissue – the terms have even been used as synonyms [1]. But the fact is that a cryopreservation method that is effective for one tissue may not be effective for another and even if reasonably effective it may not necessarily produce fully functional, living tissue – some cells may have been destroyed. One sometimes encounters the oxymoron “preservation injury” but surely, “preservation” and “injury” are mutually exclusive. And what does the term “viability” mean in a scientific context? The situation is complicated but at least some of the confusion may be resolved if we can define some of these terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien et al (1987) The viable cryopreserved allograft aortic valve. J Cardiac Surg 1(Suppl):153–167

    Google Scholar 

  2. Polge C, Smith AU and Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Article  PubMed  CAS  Google Scholar 

  3. Pegg DE, Wusteman MC, Boylan S (1997) Fractures in cryopreserved elastic arteries. Cryobiology 34:183–192

    Article  PubMed  CAS  Google Scholar 

  4. Pegg DE, Wusteman MC, Wang, L (2006) Cryopreservation of articular cartilage Part 1. Conventional cryopreservation methods. Cryobiology 52:335–346

    Article  PubMed  CAS  Google Scholar 

  5. Pegg DE (1989) Viability assays for preserved cells, tissues and organs. Cryobiology 26:212–231

    Article  PubMed  CAS  Google Scholar 

  6. Huang Q, Pegg DE, Kearney JN (2004) Banking of non-viable skin allografts using high concentrations of glycerol or propylene glycol. Cell Tissue Bank 5:3–21

    Article  PubMed  CAS  Google Scholar 

  7. Hopkins RA (1989) Rationale for use of cryopreserved allograft tissues for cardiac reconstruction. In: Hopkins RA (ed) Cardiac reconstructions with aortic valves. Springer, New York, NY, pp 15–20

    Chapter  Google Scholar 

  8. Aidulis D, Pegg DE, Hunt CJ, Goffin YA, Vanderkelen A, van Hoeck B, Santiago T, Ramos T, Gruys E, Voorhout W (2002) Processing of ovine cardiac valve allografts: 1. Effects of preservation method on structure and mechanical properties. Cell Tissue Bank 3:79–89

    Article  PubMed  CAS  Google Scholar 

  9. Neves J, Abecassis M, Santiago T, Ramos T, Melo J, Gruys E, Hulskamp-Koch C, Ultee A, Verkaar ELC, Lenstra CH, Goffin YA, Vanderkelen A, van Hoeck B, Hunt CJ, Pegg DE (2002) Processing of ovine cardiac valve allografts: 3. Implantation following antimicrobial treatment and preservation. Cell Tissue Bank 3:105–119

    Article  PubMed  CAS  Google Scholar 

  10. Barnes DWH, Loutit JF (1955) The radiation recovery factor: preservation by the Polge-Smith-Parkes technique. J Nat Cancer Inst 15:901

    PubMed  CAS  Google Scholar 

  11. Lovelock JE, Bishop MWH (1959) Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature(Lond) 183:1394–1395

    Article  CAS  Google Scholar 

  12. Lovelock JE (1954) The protective action by neutral solutes against haemolysis by freezing and thawing. Biochem J 56:265–270

    PubMed  CAS  Google Scholar 

  13. Ashwood-Smith MJ (1961) Preservation of mouse bone marrow at –79°C with dimethyl sulphoxide. Nature(Lond) 190:1204

    Article  CAS  Google Scholar 

  14. Pegg DE, Lancaster PA (1998) A digital device and software for capturing and analysing cell volume data from a Coulter counter. Cryobiology 37:441

    Google Scholar 

  15. Arnaud FG, Pegg DE (1990) Permeation of glycerol and propane-1,2-diol into human platelets. Cryobiology 27:107–118

    Article  PubMed  CAS  Google Scholar 

  16. Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: 1. Osmotically inactive volume, hydraulic conductivity and permeability of CD34+ cells to dimethyl sulphoxide. Cryobiology 46:61–75

    Article  PubMed  CAS  Google Scholar 

  17. Pegg DE (2006) Principles of cryobiopreservation. In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols. Methods in molecular biology, vol 38, 2nd edn. Human Press, Totowa, NJ

    Google Scholar 

  18. Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: 2. Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology 46:76–87

    Article  PubMed  CAS  Google Scholar 

  19. Karow AM, Pegg DE (eds) (1981) Organ preservation for transplantation, 2nd edn. Marcel Dekker, New York, NY

    Google Scholar 

  20. Fuller BJ, Lee CY (2007) Hypothermic perfusion preservation: the future of organ preservation revisited. Cryobiology 54:129–145

    Article  PubMed  CAS  Google Scholar 

  21. Jacobsen IA, Pegg DE (1984) Cryopreservation of organs: a review. Cryobiology 21:377–384

    Article  PubMed  CAS  Google Scholar 

  22. Wang X et al (2002) Fertility after intact ovary transplantation. Nature 425:385

    Article  Google Scholar 

  23. Morris GJ, Farrant J (1972) Interactions of cooling rate and protective additive on the survival of washed human erythrocytes frozen to –196°C. Cryobiology 9:173

    Article  PubMed  CAS  Google Scholar 

  24. Hunt CJ, Taylor MJ, Pegg DE (1982) Freeze-substitution and isothermal freeze-fixation studies to elucidate the pattern of ice formation in smooth muscle at 252 K (–21°C). J Microsc 125:177–186

    Article  PubMed  CAS  Google Scholar 

  25. Taylor MJ, Pegg DE (1983) The effect of ice formation on the function of smooth muscle tissue stored at –21° or –60°C. Cryobiology 20:36–40

    Article  PubMed  CAS  Google Scholar 

  26. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at –196°Cv by vitrification. Nature (London) 313:573–575

    Article  CAS  Google Scholar 

  27. Farrant J (1965) Mechanism of cell damage during freezing and thawing and its prevention. Nature (London) 205:1284–1287

    Article  CAS  Google Scholar 

  28. Elford BC, Walter CA (1972) Effects of electrolyte composition and pH on the structure and function of smooth muscle cooled to –79°C in unfrozen media. Cryobiology 9:82–100

    Article  PubMed  CAS  Google Scholar 

  29. Pegg DE, Wang L, Vaughan, D (2006) Cryopreservation of articular cartilage 3. The liquidus-tracking method. Cryobiology 52:360–368

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, Pegg DE, Lorrison J, Vaughan D, Rooney P (2007) Further work on the cryopreservation of articular cartilage with particular reference to the liquidus-tracking method. Cryobiology 55:138–147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter draws on material previously published by the author in the BBTS Newsletter No 42 (Autumn 1996) and in an article “The preservation of tissues for transplantation.” Published in Cell and Tissue Banking, 7, 349–358 (2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pegg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Pegg, D. (2010). Cryopreservation. In: Galea, G. (eds) Essentials of Tissue Banking. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9142-0_8

Download citation

Publish with us

Policies and ethics