Skip to main content

Intestinal Spirochetes of Termites

  • Chapter
  • First Online:
All Flesh Is Grass

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 16))

  • 1667 Accesses

Abstract

Spirochetes differ from all other bacteria by their unique morphology and ­mechanism of motility. The cells possess a helical shape, and the flagella (axial filaments) are located in the periplasmic space. The flagella are attached to the cell poles and wrapped around the protoplasmic cylinder. The flagella and the protoplasmic cylinder are surrounded by a multilayered outer sheath or outer cell envelope (Canale-Parola, 1984). The 16S rRNA sequences demonstrated that the spirochetes represent a monophyletic phylum within the bacteria (Paster and Dewhirst, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, T., Bignell, D.E. and Higashi, M. (eds.) (2001) Termites: Evolution, Sociality, Symbioses, Ecology. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Berchtold, M. and König, H. (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. Syst. Appl. Microbiol. 19: 66–73.

    Article  Google Scholar 

  • Berchtold, M., Ludwig, W. and König, H. (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol. Lett. 123: 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Berchtold, M., Chatzinotas, A., Schönhuber, W., Brune, A., Amann, R., Hahn, D. and König, H. (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch. Microbiol. 172: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Berlanga, M., Paster, B.J. and Guerrero, R. (2007) Coevolution of symbiotic spirochete diversity in lower termites. Int. Microbiol. 10: 133–139.

    PubMed  CAS  Google Scholar 

  • Bermudes, D., Chase, D. and Margulis, L. (1988) Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites - Pillotina gen. nov., nom. rev, Pillotina calotermitidis sp. nov, nom rev., Diplocalyx gen. nov., nom. rev., Diplocalyx calotermitidis sp. nov., nom. rev., Hollandina gen. nov., nom. rev., Hollandina-pterotermitidis sp. nov., nom. rev., and Clevelandina reticulitermitidis gen.nov., sp-nov. Int. J. Syst. Bacteriol. 38: 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Bignell, D.E. and Anderson, J.M. (1980) Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol. 26: 183–188.

    Article  CAS  Google Scholar 

  • Bloodgood, R.A. and Fitzharris, T.P. (1976) Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roack Cryptocercus. Cytobios 17: 103–122.

    PubMed  CAS  Google Scholar 

  • Breznak, J.A. (1984) Hindgut spirochetes of termites and Cryptocercus punctulatus, In: N.R. Krieg (ed.) Bergey’s Manual of Systematic Bacteriology, Vol 1. Williams & Wilkins, Baltimore, pp. 67–70.

    Google Scholar 

  • Breznak, J.A. (2002) Phylogenetic diversity and physiology of termite gut spirochetes. Integ. and Comp. Biol. 42: 313–318.

    Article  Google Scholar 

  • Breznak, J.A. (2006) Termite gut spirochetes, In: J.D. Radolf and S.A. Lukehart (eds.) Pathogenic Treponema: Molecular and Cellular Biology. Caister Academic Press, Norfolk, pp. 421–444.

    Google Scholar 

  • Breznak, J.A. and Brune, A. (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453–487.

    Article  CAS  Google Scholar 

  • Breznak, J.A. and Leadbetter, J.R. (2002) Termite gut spirochetes, In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokaryotes: An Online Electronic Resource for the Microbiological Community, Third Edition, release 3.10. Springer, New York.

    Google Scholar 

  • Breznak, J.A and Leadbetter, J.R. (2006) In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokaryotes, Vol. 7. Springer Verlag, New York. pp. 318–329.

    Google Scholar 

  • Brugerolle, G. (2004) Devescovinid features, a remarkable surface cytoskeleton, and epibiotic bacteria revisited in Mixotricha paradoxa, a parabasalid flagellate. Protoplasma 224: 49–59.

    PubMed  CAS  Google Scholar 

  • Brune, A. and Stingl, U. (2006) Prokaryotic symbionts of termite gut flagellates: Phylogenetic and Metabolic Implications of a Tripartite Symbiosis, In: J. Overmann (ed.) Molecular Basis of Symbiosis. Springer Verlag, Heidelberg, pp. 39–60.

    Chapter  Google Scholar 

  • Brune, A., Emerson, D. and Breznak, J.A. (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61: 2681–2687.

    PubMed  CAS  Google Scholar 

  • Bryant, M.P. (1984) Genus Ruminococcus Sijpesteijn 1948, 152AL, In: N.R. Krieg and J.G. Holt (eds.) Bergey’s Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, Baltimore, MD, pp. 1093–1097.

    Google Scholar 

  • Canale-Parola, E. (1984) Order I. Spirochaetales Buchanan 1917, 163AL, In: N.R. Krieg and J.G. Holt (eds.) Bergey’s Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD, pp. 38–70.

    Google Scholar 

  • Cleveland, L.R. and Grimstone, A.V. (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated microorganisms. Proc. Roy. Soc. Lond. Ser. B 159: 668–686.

    Article  Google Scholar 

  • Dröge, S., Fröhlich, J., Radek, R. and König, H. (2006) Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl. Environ. Microbiol. 72: 392–397.

    Article  PubMed  Google Scholar 

  • Dröge, S., Rachel, R., Radek, R. and König, H. (2008) Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int. J. Syst. Evol. Microbiol. 58: 1079–1083.

    Article  PubMed  Google Scholar 

  • Emerson, A.E. (1965) A review of the Mastotermitidae (Isoptera), including a new fossil genus from Brazil. Am. Mus. Novitates 2236: 1–46.

    Google Scholar 

  • Eutick, M.L., Veivers, P., O’Brian, R.W. and Slaytor, M. (1978) Dependence of the higher termite Nasutitermes exitiosus and the lower termite Coptotermes lacteus on their hindgut flora. J. Insect. Physiol. 24: 363–368.

    Article  CAS  Google Scholar 

  • Gharagozlou, I.D. (1968) Aspect infrastructural de Diplocalyx calotermitidis nov. gen. nov. sp. spirochaetale de l’intestin de Calotermes flavicollis. C. R. Acad. Sci. Ser. D 266: 494–496.

    Google Scholar 

  • Graber, J.R. and Breznak, J.A. (2004) Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl. Environ. Microb. 70: 1307–1314.

    Article  CAS  Google Scholar 

  • Graber, J.R. and Breznak, J.A. (2005) Folate cross-feeding supports symbiotic homoacetogenic spirochetes. Appl. Environ. Microb. 71: 1883–1889.

    Article  CAS  Google Scholar 

  • Graber, J.R., Leadbetter, J.R. and Breznak, J.A. (2004) Description of Treponema azotonutricium sp nov and Treponema primitia sp nov., the first spirochetes isolated from termite guts. Appl. Environ. Microb. 70: 1315–1320.

    Article  CAS  Google Scholar 

  • Hollande, A.C. and Gharagozlou I.D. (1967) Morphologie infrastructurale de Pillotina calotermitidis nov. gen. nov. sp. spirochaetale de l’intestin de Calotermes praecox. C. R. Acad. Sci. Ser. D 265: 1309–1312.

    CAS  Google Scholar 

  • Hollande, A., Gharagozlou, I. and Grassé, P.P. (1967) Infrastructural morphology of Pillotina calotermitidis nov. gen., no. sp., Spirochaetales in the intestine of Calotermes praecox. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 265: 1309–1312.

    PubMed  CAS  Google Scholar 

  • Hongoh, Y., Ohkuma, M. and Kudo, T. (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol. Ecol. 44: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Hongoh, Y., Deevong, P., Hattori, S., Inoue, T., Noda, S., Noparatnaraporn, N., Kudo, T. and Ohkuma, M. (2006) Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl. Environ. Microbiol. 72: 6780–6788.

    Article  PubMed  CAS  Google Scholar 

  • Iida, T., Ohkuma, M., Ohtoko, K. and Kudo, T. (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol. Ecol. 34: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, J.I., Noda, S., Hongoh, Y., Ui, S. and Ohkuma, M. (2008) Identification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite Coptotermes formosanus. Microb. Environ. 23: 94–97.

    Article  Google Scholar 

  • Jeon, K.W. (2007) Prokaryotic symbionts of Amoebae and Flagellates, In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokaryotes. Proteobacteria. Delta, Epsilon Subclass, Vol. 7. Springer, Heidelberg, pp. 1028–1037.

    Google Scholar 

  • Kirby, H. (1936) Two polymastigote flagellates of the genera Pseudodevescovina and Caduceia. Quart. J. Microscop. Sci. 79: 309–335.

    Google Scholar 

  • Kirby, H. (1941a) Devescovinid flagellates of termites I. The genus Devescovina. Univ. Calif. Publ. Zool. 45: 1–92.

    Google Scholar 

  • Kirby, H. (1941b) Devescovinid flagellates of termites II. The genera Caduceia and Macrotrichomonas. Univ. Calif. Publ. Zool. 45: 93–166.

    Google Scholar 

  • Kirby, H. (1941c) Devescovinid flagellates of termites III. The genera Foaina and Parajoenia. Univ. Calif. Publ. Zool. 45: 167–246.

    Google Scholar 

  • Kirby, H. (1941d) Devescovinid flagellates of termites IV. The genera Metadevescivina and Pseudodevescovina. Univ. Calif. Publ. Zool. 45: 247–318.

    Google Scholar 

  • Kirby, H. (1941e) Devescovinid flagellates of termites V. The genus Hyperdevescivina, the genus Bullanympha, and undescribed or unrecorded species. Univ. Calif. Publ. Zool. 45: 319–422.

    Google Scholar 

  • König, H. and Varma, A. (eds.) (2006) Intestinal Microorganisms of Termites and Other Invertebrates. Springer Verlag, Heidelberg.

    Google Scholar 

  • König, H., Fröhlich, J., Berchtold, M. and Wenzel, M. (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res. Dev. Microbiol. 6: 125–156.

    Google Scholar 

  • König, H., Fröhlich, J. and Hertel, H. (2006) Diversity and lignocellulolytic activities of cultured microorganisms, In: H. König and A. Varma (eds.) Intestinal Microorganisms of Termites and Other Invertebrates. Springer Verlag, Heidelberg, pp. 271–301.

    Chapter  Google Scholar 

  • König, H., Fröhlich, J., Li, L., Wenzel, M., Berchtold, M., Dröge, S., Breunig, A., Pfeiffer, P., Radek, R. and Brugerolle, G. (2007) The flagellates of the Australian termite Mastotermes darwiniensis: Identification of their symbiotic bacteria and cellulases. Symbiosis 44: 51–65.

    Google Scholar 

  • Kudo, T., Ohkuma, M., Moriya, S., Noda, S. and Ohtoko, K. (1998) Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2: 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter, J.R. and Breznak, J.A. (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62: 3620–3631.

    PubMed  CAS  Google Scholar 

  • Leadbetter, J.R., Schmidt, T.M., Graber, J.R., and Breznak, J.A. (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283: 686–689.

    Article  PubMed  CAS  Google Scholar 

  • Leidy, J. (1874–1881) The parasites of termites. J. Acad. Nat. Sci. (Phila) 8: 425–447.

    Google Scholar 

  • Leidy, J. (1877). On the intestinal parasites of Termes flavipes. Proc. Acad. Nat. Sci. (Phila) 29: 146–149.

    Google Scholar 

  • Lilburn, T.G., Schmidt, T.M. and Breznak, J.A. (1999) Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol. 1: 331–345.

    Article  PubMed  CAS  Google Scholar 

  • Lilburn, T.C., Kim, K.S., Ostrom, N.E., Byzek, K.R., Leadbetter, J.R. and Breznak, J.A. (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292: 2495–2498.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, L.M., Muigai, A.T., Osir, E.O., Lwande, W., Keller, M., Toledo, G. and Boga, H.I. (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjostedt). Afr. J. Biotechnol. 6: 658–667.

    CAS  Google Scholar 

  • Margulis, L. and G. Hinkle (1991) Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pilotina, In: A. Balows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.) The Prokaryotes, Second Editon. Springer-Verlag, Heidelberg, pp. 3965–3978.

    Google Scholar 

  • Margulis, L. and G. Hinkle (1999) Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pilotina, In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (eds.) The Prokaryotes: An Online Electronic Resource for the Microbiological Community, Third Edition, release 3.0. Springer, New York.

    Google Scholar 

  • Margulis, L., Chase, D. and To, L.P. (1979) Possible evolutionary significance of spirochaetes. Proc. R. Soc. Lond. B 204: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Margulis, L., Leleng, P.T. and Chase, D.G. (1981) The genera Pillotina, Hollandina, and Diplocalyx, In: M.P. Starr, H. Stolp, H.G. Trüper, A. Balows and H.G. Schlegel (eds.) The Prokaryotes. Springer-Verlag, Heidelberg, pp. 548–554.

    Google Scholar 

  • Murphy, G.E., Matson, E.G., Leadbetter, J.R., Berg, H.C., and Jensen, G.J. (2008) Novel ultrastructures of Treponema primitia and their implications for motility. Mol. Microbiol. 67: 1184–1195.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, H., Hongoh, Y., Noda, S., Yoshida Y., Usami, R., Kudo, T. and Ohkuma, M. (2006) Phylogenetic and morphological diversity of bacteroidales members associated with the gut wall of termites. Biosci. Biotechnol. Biochem. 70: 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G. and Azuma, J.I. (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect. Biochem. Mol. Biol. 32: 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Nalepa, C.A. and Bandi, C. (2000) Characterization the ancestors: praedomorphosis and termite evolution, In: T. Abe, D.E. Bignell and M. Higashi (eds.) Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer Academic, Dordrecht, pp. 53–75.

    Google Scholar 

  • Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y. and Kudo, T. (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl. Environ. Microb. 69: 625–633.

    Article  CAS  Google Scholar 

  • Ochman, H. and Wilson, A.C. (1987) Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26: 74–86.

    Article  PubMed  CAS  Google Scholar 

  • Odelson, D.A. and Breznak, J.A. (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl. Environ. Microbiol. 45: 1602–1613.

    PubMed  CAS  Google Scholar 

  • Ohkuma, M. and Kudo, T. (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl. Environ. Microbiol. 62: 461–468.

    PubMed  CAS  Google Scholar 

  • Ohkuma, M. and Kudo, T. (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol. Lett. 164: 389–395.

    Article  CAS  Google Scholar 

  • Ohkuma, M., Iida, T. and Kudo, T. (1999) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol. Lett. 181: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, I., Paster, B.J. and Dewhirst, F.E. (2000) Taxonomy of spirochetes. Anaerobe 6: 39–57.

    Article  CAS  Google Scholar 

  • Paster, B.J. and Canale-Parola, E. (1981). Physiological diversity of rumen spirochetes. Appl. Environ. Microbiol. 43: 686–693.

    Google Scholar 

  • Paster, B.J. and Canale-Parola, E. (1985) Treponema saccharophilum sp. nov., a large pectinolytic spirochete from the bovine rumen. Appl. Environ. Microbiol. 50: 212–219.

    PubMed  CAS  Google Scholar 

  • Paster, B.J. and Dewhirst, F.E. (2001) Phylogenetic foundations of spirochetes. In M.H. Saier, Jr. and J. Garcia-Lara (eds.) The Spirochetes: Molecular and Cellular Biology. Horizon Scientific Press, Wymondham, pp. 5–9.

    Google Scholar 

  • Paster, B.J., Dewhirst, F.E., Cooke, S.M., Fussing, V., Poulsen, L.K., and Breznak, J.A. (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl. Environ. Microbiol. 62: 347–352.

    PubMed  CAS  Google Scholar 

  • Pester, M. and Brune, A. (2006) Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. Environ. Microbiol. 8: 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Radek, R. and Nitsch, G. (2007) Ectobiotic spirochetes of flagellates from the termite Mastotermes darwiniensis: Attachment and cyst formation. Eur. J. Protistol. 43: 281–294.

    Article  PubMed  Google Scholar 

  • Radek, R., Rösel, J. and Hausmann, K. (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193: 105–122.

    Article  Google Scholar 

  • Ritalahti, K.M. and Löffler, F.E. (2004) Characterisation of novel free-living pleiomorphic spirochetes (FLiPS). Abstracts of the 10th International Symposium on Microbial Ecology, Cancun, ­Mexico.

    Google Scholar 

  • Rösel, J., Radek, R. and Hausmann, K (1996) Ultrastructure of the trichomonad flagellate Stephanonympha nelumbium. J. Euk. Microbiol. 43: 505–511.

    Article  Google Scholar 

  • Salmassi, T.M. and Leadbetter, J.R. (2003) Analysis of genes of tetrahydrofolate-dependent metabolism from cultivated spirochaetes and the gut community of the termite Zootermopsis angusticollis. Microbiology 149: 2529–2537.

    Article  PubMed  CAS  Google Scholar 

  • Schäfer, A., Konrad, R., Kuhnigk, T., Kämpfer, P., Hertel, H. and König, H. (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol. 80: 471–478.

    Article  PubMed  Google Scholar 

  • Schmitt-Wagner, D., Friedrich, M.W., Wagner, B. and Brune, A. (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl. Environ. Microbiol. 69: 6007–6017.

    Article  PubMed  CAS  Google Scholar 

  • Shinzato, N., Muramatsu, M., Matsui, T., Watanabe, Y., (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosc. Biotechnol. Biochem. 69: 1145–1155.

    Article  CAS  Google Scholar 

  • Smith, H.E., Buhse, H.E. Jr. and Stamler, S.J. (1975) Possible formation and development of spirochaete attachment sites found on the surface of symbiotic polymastigote flagellates of the termite Reticulitermes flavipes. Biosystems 7: 374–379.

    Google Scholar 

  • Sutherland, J.L. (1933) Protozoa from Australian termites. Quart. J. Microscop. Sci. 76: 145–173.

    Google Scholar 

  • Tamm, S.L. (1982) Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J. Cell Biol. 94: 697–709.

    Article  PubMed  CAS  Google Scholar 

  • Tholen, A. and Brune, A. (2000). Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ. Microbiol. 2: 436–444.

    Article  PubMed  CAS  Google Scholar 

  • To, L.P. and Margulis, L. (1978) Ancient locomotion: prokaryotic motility systems. Int. Rev. Cytol. 54: 267–293.

    Article  Google Scholar 

  • To, L., Margulis, L. and Cheung A.T. (1978) Pillotinas and hollandinas: distribution and behaviour of large spirochaetes symbiotic in termites. Microbios 22: 103–133.

    PubMed  CAS  Google Scholar 

  • To, L.P., Margulis, L., Chase, D. and Nutting, W.L. (1980) The symbiotic microbial community of the Sonoran Desert termite: Pterotermes occidentis. Biosystems 13: 109–137.

    Article  PubMed  CAS  Google Scholar 

  • Varma, A., Kolli, B.K., Paul, J., Saxena, S. and H. König. (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol. Rev. 15: 9–28.

    Article  CAS  Google Scholar 

  • Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Cayouette, M., McHardy, A.C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S.G., Podar, M., Martin, H.G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N.C., Matson, E.G., Ottesen, E.A., Zhang, X., Hernández, M., Murillo, C., Acosta, L.G., Rigoutsos, I., Tamayo, G., Green, B.D., Chang, C., Rubin, E.M., Mathur, E.J., Robertson, D.E., Hugenholtz, P. and Leadbetter, J.R. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560–565.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, M., Schönig, M., Berchtold, M., Kämpfer, P. and König, H. (2002) Aerobic and facultatively anaerobic celluloytic bacteria from the gut of the termite Zootermopsis angusticollis. J. Appl. Microbiol. 92: 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, M., Radek, R., Brugerolle, G. and König, H. (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur. J. Protistol. 39: 11–23.

    Article  Google Scholar 

  • Wier, A., Ashen, J. and Margulis, L., (2000) Canaleparolina darwiniensis, gen. nov., sp. nov., and other pillotinaceous spirochetes from insects. Int. Microbiol. 3: 213–223.

    PubMed  CAS  Google Scholar 

  • Wier, A., Dolan, M., Grimaldi, D., Guerrero, R., Wagensberg, J., and Margulis, L. (2002) Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. PNAS 99: 1410–1413.

    Article  PubMed  CAS  Google Scholar 

  • Wier, A.M., MacAllister, J. and Margulis, L. (2007) Hibernacular behavior of spirochetes inside membrane-bounded vesicles of the termite protist Staurojoenina assimilis. Symbiosis 44: 75–83.

    Google Scholar 

  • Wolgemuth, C., Goldstein, S.F. and Charon, N.W. (2008) Electron cryotomography reveals novel structures of a recently cultured termite gut spirochete. Mol. Microbiol. 67: 1181–1183.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author thanks Dr. Hertel from the Bundesanstalt für Materialprüfung und Materialforschung, Berlin, for supplying the termite cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut KÖnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

KÖnig, H., Dröge, S. (2010). Intestinal Spirochetes of Termites. In: Dubinsky, Z., Seckbach, J. (eds) All Flesh Is Grass. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9316-5_3

Download citation

Publish with us

Policies and ethics