Skip to main content

Ascorbate and Glutathione: Protectors of Plants in Oxidative Stress

  • Chapter
  • First Online:
Ascorbate-Glutathione Pathway and Stress Tolerance in Plants

Abstract

Reactive oxygen species (ROS) are produced naturally in plants during normal growth conditions. However, their production is accelerated manifold during various abiotic and biotic stresses. Rapid and efficient detoxification of ROS is vital to avoid any damage at cellular level. This is done by a well defined antioxidative system which comprises of various enzymes (superoxide dismutase, catalases and peroxidases) and low molecular weight compounds such as; praline, betaine, ascorbate and glutathione. Among these, ascorbate and glutathione are directly involved in scavenging of ROS. The present article will emphasize on the biosynthesis and role of ascorbate and glutathione during oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AsA:

ascorbic acid

APX:

ascorbate peroxidase

CAT:

catalase

DHAR:

dehydroascorbate, reductase

EBR:

2,4-epibrassinosteroid

FTS:

ferredoxin thioredoxin system

GR:

glutathione reductase

Grx:

glutaredoxin

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GPX:

guaiacol peroxidase

LOX:

lipoxygenase

MDA:

malondialdehyde

NGS:

NADPH glutaredoxin system

NTS:

NADPH thioredoxin system

NTR:

Trx reductase

PAPS:

phosphoadenylyl sulfate

RNR:

ribonucleotide reductase

SOD:

superoxide dismutase

Trx:

thioredoxin

References

  • Alonso JM et al (2000) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Google Scholar 

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul 54:271–279

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    PubMed  CAS  Google Scholar 

  • Aro EM, Ohad I (2003) Redox regulation of thylakoid protein phosphorylation. Antioxid Redox Signal 5:56–67

    Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid, much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    PubMed  CAS  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94:14150–14155

    PubMed  CAS  Google Scholar 

  • Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thiredoxins. Science 320:1050–1054

    PubMed  CAS  Google Scholar 

  • Biehler K, Fock H (1996) Evidence for the contribution of the Mehlerperoxidase reaction in dissipating excess electrons in droughtstressed wheat. Plant Physiol 112:265–272

    PubMed  CAS  Google Scholar 

  • Borland A, Elliott S, Patterson S (2006) Are the metabolic components of crassulacean acid metabolism up-regulated in responses to an increase in oxidative burden? J Exp Bot 57:319–328

    PubMed  CAS  Google Scholar 

  • Bouvier F, Backhaus RA, Camara B (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J Biol Chem 273:30651–30659

    PubMed  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    PubMed  CAS  Google Scholar 

  • Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot JP (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73:215–222

    PubMed  CAS  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    PubMed  CAS  Google Scholar 

  • Cheng JC, Seeley KA, Sung ZR (1995) RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol 107:365–376

    PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathionedeficient, cadmium-sensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

    PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Davey MW, Keulemans J (2004) Determining the potential to breed for enhanced antioxidant status in Malus: mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J Agric Food Chem 52:8031–8038

    PubMed  CAS  Google Scholar 

  • Delaunay A, Isnard AD, Toledano MB (2000) H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J 19:5157–5166

    PubMed  CAS  Google Scholar 

  • Faulkner MJ, Veeravalli K, Gon S, Georgiou G, Beckwith J (2008) Functional plasticity of a peroxidase allows evolution of diverse disulfidereducing pathways. Proc Natl Acad Sci USA 105:6735–6740

    PubMed  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717

    CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF et al (1997) Hydrogen peroxide-and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005b) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    PubMed  CAS  Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    PubMed  CAS  Google Scholar 

  • Gelhaye E, Rounier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/GRX for its reduction. FEBS Lett 555:443–448

    PubMed  CAS  Google Scholar 

  • González A, Steffen KL, Lynch JP (1998) Light and excess manganese, implications for oxidative stress in common bean. Plant Physiol 118:493–504

    PubMed  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    PubMed  CAS  Google Scholar 

  • Guo JB, Dai XJ, Xu WZ, Ma M (2008) Overexpression of GSH1 and AsPCS1 simultaneously increase the tolerance and accumulation of cadmium ad arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    PubMed  CAS  Google Scholar 

  • Hai-hua W, Tao F, Xi-xu P, Ming-li Y, Ping-lan Z, Xin-ke T (2009) Ameliorative Effects of Brassinosteroid on excess manganese-induced oxidative stress in Zea mays L. leaves. Agric Sci China 8:1063–1074

    Google Scholar 

  • Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein. J Biol Chem 279:13044–13053

    PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    CAS  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamatecysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    PubMed  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482

    PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H, Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195:456–463

    PubMed  CAS  Google Scholar 

  • Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429–1438

    PubMed  CAS  Google Scholar 

  • Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S, Machen T, Remington SJ, Feldman L (2006) Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403

    PubMed  CAS  Google Scholar 

  • Jiménez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P (2002a) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    PubMed  Google Scholar 

  • Jiménez A, Gómez JM, Navarro E, Sevilla F (2002b) Changes in the antioxidative systems in mitochondria during ripening of pepper fruits. Plant Physiol Biochem 40:515–520

    Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008a) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mat 156:387–397

    CAS  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q, Li H, Li J (2008b) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Biochem 46:997–1006

    PubMed  CAS  Google Scholar 

  • Jin X, Liu D, Islam E, Mahmood Q, Yang X, He ZL, Stoffella PJ (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium treated Sedum alfredii H. J Plant Nutr 32:1642–1656

    CAS  Google Scholar 

  • Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    PubMed  CAS  Google Scholar 

  • Khan NA, Nazar R, Anjum NA (2009) Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic 122:455–460

    CAS  Google Scholar 

  • Koh CS, Navrot N, Didierjean C, Rouhier N, Hirasawa M, Knaff DB, Wingsle G, Samian R, Jacquot JP, Corbier C, Gelhaye E (2008) An atypical catalytic mechanism involving three cysteines of thioredoxin. J Biol Chem 283:23062–23072

    PubMed  CAS  Google Scholar 

  • Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149

    PubMed  CAS  Google Scholar 

  • Li JM, Jin H (2007) Regulation of brassinosteroid signaling. Trends Plant Sci 12:37–41

    PubMed  CAS  Google Scholar 

  • Li S, Zachgo S (2009) Glutaredoxins in development and stress responses of plants. Adv Bot Res 52:333–361

    Google Scholar 

  • Lu YP, Li ZS, Rea PA (1997) AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proc Natl Acad Sci USA 94:8243–8248

    PubMed  CAS  Google Scholar 

  • Malacrida C, Valle E, Boggio S (2006) Postharvest chilling induces oxidative stress response in the dwarf tomato cultivar Micro-Tom. Physiol Plant 127:10–18

    CAS  Google Scholar 

  • Marty L, Siala W, Schwarzländer M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld J, Hell R (2009) The NADPH dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci USA 106:9109–9114

    PubMed  CAS  Google Scholar 

  • Matamoros MA, Loscos J, Dietz KJ, Aparicio-Tejo PM, Becana M (2010) Function of antioxidant enzymes and metabolites during maturation of pea fruits. J Exp Bot 61:87–97

    PubMed  CAS  Google Scholar 

  • Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia–legume symbiosis. Plant Physiol 133:499–509

    PubMed  CAS  Google Scholar 

  • May M, Vernoux T, Leaver C, Van Montagu M, Inze D (1998a) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–667

    CAS  Google Scholar 

  • May MJ, Vernoux T, Sánchez-Fernández R, Van Montagu M, Inzé D (1998b) Evidence for posttranscriptional activation of γ-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci USA 95:12049–12054

    PubMed  CAS  Google Scholar 

  • Meyer Y, Riondet C, Constans L, Abdelgawwad MR, Reichheld JP, Vignols F (2006) Evolution of redoxin genes in the green lineage. Photosynth Res 89:179–192

    PubMed  CAS  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    PubMed  CAS  Google Scholar 

  • Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E, Lemaire SD (2006) Thioredoxins, glutaredoxins, and glutathionylation: new crosstalk’s to explore. Photosynth Res 89:225–245

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004a) Reactive oxygen gene network of plants. Trends Plant Sci 10:1360–1385

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004b) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    PubMed  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    PubMed  CAS  Google Scholar 

  • Ogawa K, Tasaka Y, Mino M, Tanaka Y, Iwabuchi M (2001) Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol 42:524–530

    PubMed  CAS  Google Scholar 

  • Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamateand cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8

    PubMed  CAS  Google Scholar 

  • Palma JM, Jiménez A, Sandalio LM, Corpas FJ, Lundqvist M, Gómez M, Sevilla F, del Río A (2006) Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants. J Exp Bot 57:1747–1758

    PubMed  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J Cell Mol Biol 49:159–172

    CAS  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J Cell Mol Biol 53:999–1012

    CAS  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    PubMed  CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Z B, Czerpaka R, KamiÅ„ska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza(Lemnaceae). Environ Exp Bot 66:507–513

    CAS  Google Scholar 

  • Rahman I, MacNee W (2000) Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 28:1405–1420

    PubMed  CAS  Google Scholar 

  • Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865

    PubMed  CAS  Google Scholar 

  • Reichheld JP, Bashandy T, Siala W, Riondet C, Delorme V, Meyer A, Meyer Y (2009) Redundancy and crosstalk within the thioredoxin and glutathione pathways: a new development in plants. Adv Bot Res 52:253–276

    CAS  Google Scholar 

  • Rogiers SY, Kumar GNM, Knowles NR (1998) Maturation and ripening of fruit of Amelanchier alnifolia Nutt. are accompanied by increasing oxidative stress. Ann Bot 81:203–211

    CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gérard J, de Faÿ E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309

    PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2002) Glutaredoxin-dependent peroxiredoxin from poplar: protein–protein interaction and catalytic mechanism. J Biol Chem 277:13609–13614

    PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NAPDH oxidases. Plant Physiol 141:336–340

    PubMed  CAS  Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Montagu MV, Inzé D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    PubMed  Google Scholar 

  • Schürmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1274

    PubMed  Google Scholar 

  • Schürmann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400

    PubMed  Google Scholar 

  • Schmöger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    PubMed  Google Scholar 

  • Shao HB, Chu LY (2005) Plantmolecular biology in China: opportunities and challenges. Plant Mol Biol Rep 23:345–358

    CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA et al (2005a) Investigation on dynamic changes of photosynthetic characteristics of 10 wheat (Triticum aestivum L.) genotypes during two vegetative-growth stages at water deficits. Biointerfaces 43:221–227

    CAS  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005b) Adaptation of higher plants to stresses and stress signal transduction. Acta Ecol Sin 25:1871–1882

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005c) Dynamic changes of antioxidative enzymes of 10 wheat genotypes at soil water deficits. Biointerfaces 42:187–195

    PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Zhao CX et al (2006) Plant gene regulatory net work system under abiotic stress. Acta Biol Sezeged 50:1–9

    Google Scholar 

  • Shao HB, Chu LY, Wu G et al (2007a) Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Biointerfaces 54:143–149

    PubMed  CAS  Google Scholar 

  • Shao HB, Guo QJ, Chu LY et al (2007b) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Biointerfaces 54:37–45

    PubMed  CAS  Google Scholar 

  • Shao HB, Jiang SY, Li FM et al (2007c) Some advances in plant stress physiology and their implications in the systems biology era. Biointerfaces 54:33–36

    PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higherplant cells. Int J Biol Sci 4:8–14

    CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    PubMed  CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant Bacopa monnieri L. Chemosphere 62:233–246

    PubMed  CAS  Google Scholar 

  • Srivastava S, D’Souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicol Environ Saf. doi:10.1016/j.ecoenv.2009.12.023

    PubMed  Google Scholar 

  • Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096

    PubMed  CAS  Google Scholar 

  • Szederkenyi J, Komor E, Schobert C (1997) Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein from Ricinus communis L. and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Planta 202:349–356

    PubMed  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    PubMed  CAS  Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M, Hortensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780

    PubMed  CAS  Google Scholar 

  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol 137:317–327

    PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    PubMed  CAS  Google Scholar 

  • Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    PubMed  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    PubMed  CAS  Google Scholar 

  • Vital SA, Fowler RW, Virgen A, Gossett DR, Banks SW, Rodriguez J (2008) Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. Environ Exp Bot 62:60–68

    CAS  Google Scholar 

  • Wang Z, Xing S, Birkenbihl RP, Zachgo S (2009) Conserved functions of Arabidopsis and rice CC-type glutaredoxins in flower development and pathogen response. Mol Plant 2:323–335

    PubMed  CAS  Google Scholar 

  • Wu G, Wei ZK, Shao HB (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Biointerfaces 59:113–119

    CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J Cell Mol Biol 41:15–30

    CAS  Google Scholar 

  • Yabuta Y, Maruta T, Yoshimura K (2004) Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol 45:1586–1594

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaisar Mahmood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mahmood, Q., Ahmad, R., Kwak, SS., Rashid, A., Anjum, N.A. (2010). Ascorbate and Glutathione: Protectors of Plants in Oxidative Stress. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_7

Download citation

Publish with us

Policies and ethics