Skip to main content

Neovascularization and Intra-plaque Hemorrhage: Role of Haptoglobin, Macrophages, and Heme-Oxygenase-1 Pathway

  • Chapter
  • First Online:
Therapeutic Angiogenesis for Vascular Diseases

Abstract

Advanced atherosclerosis is characterized by increased revascularization, intraplaque hemorrhage, macrophage activation and iron deposition. The dysfunctional fragile neovessels may rupture, leading to intra-plaque hemorrhage with the subsequent release of hemoglobin from extravasated erythrocytes. Free hemoglobin is a potent inducer of oxidative stress and exerts toxic effects through macrophage activation and inflammatory stimulus. The defense mechanism to antagonize these deleterious effects of hemoglobin is mediated by haptoglobin. The hemoglobin binds to haptoglobin to form Hemoglobin-Haptoglobin complex and the clearance of this complex is mediated by the macrophage scavenger receptor CD163. Inside the macrophage, the free heme released from hemoglobin is metabolized by Heme Oxygenase-1 attenuating heme toxicity. Pathobiological mechanisms associated in this pathway and the risk-factor modulation induced by diabetes mellitus are revised in this chapter, highlighting its pivotal role in the atherosclerotic disease progression and plaque vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham NG, Rezzani R, et al. (2004) Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes. Am J Physiol Heart Circ Physiol 287:H2468–H2477.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad FK, He Z, et al. (2005) Molecular targets of diabetic cardiovascular complications. Curr Drug Targets 6(4):487–494.

    Article  PubMed  CAS  Google Scholar 

  • Asleh R, Marsh S, et al. (2003) Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res 92(11):1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Asleh R, Guetta, J. et al. (2005) Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ Res 96:435–441.

    Article  PubMed  CAS  Google Scholar 

  • Asleh R, Blum S, et al. (2008) Correction of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes 57(10):2794–2800.

    Article  PubMed  CAS  Google Scholar 

  • Bernard DR, Langlois MR, et al. (1997) Evolution of haptoglobin concentration in serum during the early phase of acute myocardial infarction. Eur J Clin Chem Clin Biochem 35(2):85–88.

    PubMed  CAS  Google Scholar 

  • Blum S, Asaf R, et al. (2007) Haptoglobin genotype determines myocardial infarct size in diabetic mice. J Am Coll Cardiol 49(1):82–87.

    Article  PubMed  CAS  Google Scholar 

  • Burke AP, Kolodgie FD, et al. (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: A postmortem study. Arterioscler Thromb Vasc Biol 24(7):1266–1271.

    Article  PubMed  CAS  Google Scholar 

  • Chaudiere J, Moutet M, et al. (1995) Antioxidant and anti-inflammatory protection of vascular endothelial cells by new synthetic mimics of glutathione peroxidase]. C R Seances Soc Biol Fil 189(5):861–882.

    PubMed  CAS  Google Scholar 

  • Corti R, Fuster V, et al. (2002) Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: Two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 106(23):2884–2887.

    Article  PubMed  CAS  Google Scholar 

  • Cotran R, Kumar V, et al. (2004) General pathology: Tissue renewal and repair: Regeneration, Healing and Fibrosis. Robbins Pathologic Basis of Disease 7 edition:107–109.

    Google Scholar 

  • Cutler RG, Plummer J, et al. (2005) Oxidative stress profiling: part II. Theory, technology, and practice. Ann N Y Acad Sci 1055:136–158.

    Article  PubMed  CAS  Google Scholar 

  • Evans RM, Barish GD, et al. (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361.

    Article  PubMed  CAS  Google Scholar 

  • Felton CV, Crook, V, et al. (1997) Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 17 (7):1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Fu BM, Shen S (2003) Structural mechanisms of acute VEGF effect on microvessel permeability. Am J Physiol Heart Circ Physiol 284(6):H2124–2135.

    PubMed  CAS  Google Scholar 

  • Fuster V, Moreno PR, et al. (2005) Atherothrombosis and high-risk plaque part I: Evolving concepts. J Am Coll Cardiol 46(6):937–954.

    Article  PubMed  Google Scholar 

  • Geiringer E (1951) Intimal vascularization and atherosclerosis. J Pathol Bacteriol 63:201–211.

    Article  PubMed  CAS  Google Scholar 

  • Graversen JH, Madsen M, et al. (2002) CD163: A signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 34(4):309–314.

    Article  PubMed  CAS  Google Scholar 

  • Guetta J, Strauss M, et al. (2007) Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin. Atherosclerosis 191(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez J, Ballinger SW, et al. (2006) Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res Oct 27; 99(9):924–932.

    Article  PubMed  CAS  Google Scholar 

  • Heistad DD, Marcus ML, et al. (1978) Regulation of blood flow to the aortic media in dogs. J Clin Invest 62:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Sugawara D, et al. (2001) Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104:1831–1836.

    Article  PubMed  CAS  Google Scholar 

  • Jabs A, Okamoto E, et al. (2007) Sequential patterns of chemokine- and chemokine receptor-synthesis following vessel wall injury in porcine coronary arteries. Atherosclerosis 192(1):75–84.

    Article  PubMed  CAS  Google Scholar 

  • Kawashima A, Oda Y, et al. (2002) Heme oxygenase-1 deficiency: the first autopsy case. Hum Pathol 33(1):125–130.

    Article  PubMed  Google Scholar 

  • Kinobe R, Ji Y, Natkatsu K (2004) Peroxynitrite mediated inactivation of heme oxygenases. BMC Pharmacol 4:26.

    Article  PubMed  Google Scholar 

  • Kockx MM, Cromheeke, KM, et al. (2003) Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 23:440–446.

    Article  PubMed  CAS  Google Scholar 

  • Kolodgie FD, Gold HK, et al. (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 349:2316–2325.

    Article  PubMed  CAS  Google Scholar 

  • Kolodgie FD, Narula J, et al. (2007) Elimination of neoangiogenesis for plaque stabilization: Is there a role for local drug therapy? J Am Coll Cardiol 49(21):2093–2101.

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen M, Graverson, et al. (2001) Identification of hemoglobin scavenger receptor. Nature 409:198–201.

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto M, Nakashima Y, et al. (1995) Intimal neovascularization in human coronary atherosclerosis: Its origin and pathophysiological significance. Hum Pathol 26(4):450–456.

    Article  PubMed  CAS  Google Scholar 

  • Langheinrich AC, Kampschulte M, et al. (2007) Vasa vasorum and atherosclerosis – Quid novi? Thromb Haemost 97(6):873–879.

    PubMed  CAS  Google Scholar 

  • Levy AP, Moreno PR (2006) Intraplaque hemorrhage. Curr Mol Med 6(5):479–88.

    Article  PubMed  CAS  Google Scholar 

  • Levy AP, Levy, JE, et al. (2007) Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arteriosc Thromb Vasc Biol 27:134–140.

    Article  CAS  Google Scholar 

  • Levy AP, Hochberg I, et al. (2002) Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: The Strong Heart Study. J Am Coll Cardiol 40(11):1984–1990.

    Article  PubMed  Google Scholar 

  • Levy AP, Purushothaman KR, et al. (2007) Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: Implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ Res 101:106–110.

    Article  PubMed  CAS  Google Scholar 

  • Levy AP, Blum S (2007) Pharmacogenomics in prevention of diabetic cardiovascular disease: Utilization of the haptoglobin genotype in determining benefit from vitamin E. Expert Rev Cardiovasc Ther 5(6): 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang, YP, (2003) Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60(1):107–114.

    Article  PubMed  CAS  Google Scholar 

  • Lin QS, Weis S, et al. (2008) Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic Biol Med 44(5):847–855.

    Article  PubMed  CAS  Google Scholar 

  • Maiellaro K, Taylor WR (2007) The role of the adventitia in vascular inflammation. Cardiovasc Res 75(4):640–648.

    Article  PubMed  CAS  Google Scholar 

  • Marfella R, Di Filippo C, et al. (2007) Diabetes, ubiquitin proteasome system and atherosclerotic plaque rupture. Circ Res 100(10):e84–85.

    Article  PubMed  CAS  Google Scholar 

  • Meerarani P, Levy AP, Purushothaman KR, et al. (2008) Down-regulation of hemoxygenase-1 gene expression is associated with decreased ferritin and increased iron deposition in diabetic atherosclerotic plaques. Diabetes 57:A179.

    Google Scholar 

  • Miller-Lotan R, Herskowitz, Y, et al. (2005) Increased renal hypertrophy in diabetic mice genetically modified at the haptoglobin locus. Diabetes Metab Res Rev 21(4):332–337.

    Article  PubMed  CAS  Google Scholar 

  • Miller-Lotan R, Miller B, et al. (2007) Retinal capillary basement membrane thickness in diabetic mice genetically modified at the haptoglobin locus. Diabetes Metab Res Rev 23(2):152–156.

    Article  PubMed  Google Scholar 

  • Moreno PR, Bernardi, VH, et al. (1996) Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 94(12):3090–3097.

    Article  PubMed  CAS  Google Scholar 

  • Moreno PR, Purushothaman, KR, et al. (2004) Plaque Neovascularization Is Increased in Ruptured Atherosclerotic Lesions of Human Aorta. Implications for Plaque Vulnerability. Circulation 110:2032–2038.

    Article  PubMed  Google Scholar 

  • Moreno PR, Purushothaman KR. et al. (2006) Neovascularization in human atherosclerosis. Circulation 113(18):2245–2252.

    Article  PubMed  Google Scholar 

  • Moreno PR, Purushothaman KR, et al. (2006) Neovascularization in human atherosclerosis. Curr Mol Med 6(5):457–477.

    Article  PubMed  CAS  Google Scholar 

  • Moreno PR, Purushothaman KR, et al. (2008) Haptoglobin genotype is a major determinant of the amount of iron in the human atherosclerotic plaque. J Am Coll Cardiol 52(13):1049–1051.

    Article  PubMed  CAS  Google Scholar 

  • Moreno PR, Sanz J, et al. (2009) Promoting mechanisms of vascular health: circulating progenitor cells, angiogenesis, and reverse cholesterol transport. J Am Coll Cardiol 53(25): 2315–2323.

    Article  PubMed  CAS  Google Scholar 

  • Morita T (2005) Heme oxygenase and atherosclerosis. Arterioscler Thromb Vasc Biol 25:1786–1795.

    Article  PubMed  CAS  Google Scholar 

  • Moulton KS, Olsen BR, et al. (2004) Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation 110(10):1330–1336.

    Article  PubMed  CAS  Google Scholar 

  • Nagy JA, Benjamin L, et al. (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11(2):109–119.

    Article  PubMed  CAS  Google Scholar 

  • Nakhoul FM, Miller-Lotan R, et al. (2007) Hypothesis–haptoglobin genotype and diabetic nephropathy. Nat Clin Pract Nephrol (6):339–344.

    Google Scholar 

  • Navab M, Anantharamaiah GM, et al. (2006) Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat Clin Pract Cardiovasc Med 3(10):540–547.

    Article  PubMed  CAS  Google Scholar 

  • Nissen SE (2006) The new era of medical imaging. N Engl J Med 355(14):1502.

    PubMed  CAS  Google Scholar 

  • Pasterkamp G, Virmani R (2002) The erythrocyte: a new player in atheromatous core formation. Heart 88(2):115–116.

    Article  PubMed  CAS  Google Scholar 

  • Pels K, Labinaz M, et al. (1999) Adventitial angiogenesis early after coronary angioplasty: Correlation with arterial remodeling. Arterioscler Thromb Vasc Biol 19(2): 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Purushothaman KR, Echeverri, D, et al. (2003) Neovascularization, inflammation and intra-plaque hemorrhage are increased in advanced human atherosclerosis from patients with diabetes mellitus. Circulation 108:459.

    Google Scholar 

  • Purushothaman K, Moreno, PR, et al. (2005) Histological evidence for atherosclerotic neovascularization as a pathway for macrophage infiltration in Diabetes Mellitus. J Am Coll Cardiol 45:873–875; 439A.

    Article  Google Scholar 

  • Rifkind JM, Nagababu E, et al. (2003) Hemoglobin redox reactions and oxidative stress. Redox Rep 8(5):234–237.

    Article  CAS  Google Scholar 

  • Roguin A, Koch W, et al. (2003) Haptoglobin genotype is predictive of major adverse cardiac events in the 1-year period after percutaneous transluminal coronary angioplasty in individuals with diabetes. Diabetes Care 26(9):2628–2631.

    Article  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340(2):115–126.

    Article  PubMed  CAS  Google Scholar 

  • Rother RP, Bell L, et al. (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease. JAMA 293:1653–1662.

    Article  PubMed  CAS  Google Scholar 

  • Silva R, D’Amico G, et al. (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol Oct; 28(10):1703–1713.

    Article  PubMed  CAS  Google Scholar 

  • Song J, Sumiyoshi S, Nakashima Y, Doi Y, et al. (2009) Overexpression of heme oxygenase-1 in coronary atherosclerosis of Japanese autopsies with diabetes mellitus: Hisayama study. Atherosclerosis 202(2):573–581.

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Mackey MM, et al. (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep 14(3):102–108.

    Article  PubMed  CAS  Google Scholar 

  • Timmermann M, Hogger P (2005) Oxidative stress and 8-iso-prostaglandin F (2alpha) induce ectodomain shedding of CD163 and release of tumor necrosis factor-alpha from human monocytes. Free Radic Biol Med 39(1):98–107.

    Article  PubMed  CAS  Google Scholar 

  • Versari D, Herrmann, J, et al. (2006) Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis. Arteriosc Thromb Vasc Biol 26(9):2132–2139.

    Article  CAS  Google Scholar 

  • Virmani R, Kolodgie FD, et al. (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 10:2054–2061.

    Article  Google Scholar 

  • Virmani R, Kolodgie FD, et al. (2005) Atherosclerotic Plaque Progression and Vulnerability to Rupture Angiogenesis as a Source of Intraplaque Hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061.

    Article  PubMed  CAS  Google Scholar 

  • Weaver LK, Hintz-Goldstein KA, et al. (2006) Pivotal advance: activation of cell surface Toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J Leukoc Biol 80(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  • Yuvan XM, Li W (2008) Iron involvement in multiple signaling pathways of atherosclerosis: a re.visited hypothesis. Curr Med Chem 15(21):2157–2172.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Purushothaman, KR., Purushothaman, M., Levy, A.P., Sharma, S.K., Fuster, V., Moreno, P.R. (2010). Neovascularization and Intra-plaque Hemorrhage: Role of Haptoglobin, Macrophages, and Heme-Oxygenase-1 Pathway. In: Slevin, M. (eds) Therapeutic Angiogenesis for Vascular Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9495-7_10

Download citation

Publish with us

Policies and ethics