Skip to main content

Organic Carbon Cycling During Himalayan Erosion: Processes, Fluxes and Consequences for the Global Carbon Cycle

  • Chapter
  • First Online:
Climate Change and Food Security in South Asia

Abstract

The net effect of organic carbon cycling during continental erosion depends on the balance between rock-derived organic carbon oxidation and ­biospheric organic carbon burial in sediments. Himalayan erosion is dominated by physical transport and each year up to two billion tons of sediments eroded from the Himalaya are delivered to the Bengal Fan through the Ganga–Brahmaputra (G–B) fluvial system.

We developed a sampling protocol that allows the heterogeneity of the sediment load to be accounted for. In the channel of large rivers, the total organic carbon content (TOC) is variable and decreases towards depth. TOC is positively correlated to Al/Si ratio, which characterizes the mineral and grain size sorting. In the delta of Bangladesh, sediments from Ganga, Brahmaputra and Lower Meghna have similar organic carbon loading.

Coupling Raman Micro-spectroscopy and High Resolution Transmitted Electron Microscopy allows the unambiguous detection and characterization of petrogenic (rock-derived) carbon. Comparison of Himalayan rivers and G–B in Bangladesh indicates that the most graphitised forms are selectively preserved and delivered to the Bay of Bengal. Radiocarbon characterization of sediments along depth profiles yields values for the absolute concentration of petrogenic carbon in rivers sediments. Comparison of Himalayan rocks and G–B sediments in Bangladesh shows that 40% (±10) of the organic carbon contained in the Himalayan rocks is preserved and delivered to the ocean.

The evolution of stable isotopic composition (δ13C) from the outflow of the Himalayan range to the delta of Bangladesh shows that during the Gangetic floodplain transit, more than 50% of organic carbon derived from the Himalaya is oxidized and replaced by organic carbon derived from the floodplain.

The organic carbon loading of recent Bengal Fan sediments is comparable to that of G–B river sediments. Biomarker abundance and δ13C values show that organic carbon is dominated by terrestrial inputs. The terrestrial organic carbon burial efficiency is thus close to 100%. This strongly contrasts with other large deltaic system on earth, where ∼70% of terrestrial organic carbon is oxidized prior to burial. This extreme burial efficiency is sustained by high erosion rate in Himalaya that generates high sedimentation rate and low oxygen availability in the Bay of Bengal.

The balance between biospheric organic carbon burial and petrogenic carbon oxidation indicates a net CO2consumption of 3.2 ± 0.8 × 1011mol/year. Atmospheric CO2consumption through organic carbon cycling during Himalayan erosion is thus an order of magnitude higher than the CO2consumption through silicate weathering in the Himalayan basin (6.4 × 1010mol/year). Efficient burial of organic carbon is a characteristic of high physical erosion typical of active orogenic systems. Enhanced physical erosion and consequent organic carbon burial buffer atmospheric CO2thereby exerting a negative feedback on the long-term climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCP:

Acoustic Doppler current profiler

G–B:

Ganga–Brahmaputra

HRTEM:

High Resolution Transmitted Electron Microscopy

OC:

Organic carbon

RM:

Raman microspectroscopy

TOC:

Total organic carbon content

WARPO:

Water Resources Planning Organization

References

  • Aucour A-M, France-Lanord C, Pedoja K, Pierson-Wickmann A-C, Sheppard SMF (2006) Fluxes and sources of particulate organic carbon in the Ganga–Brahmaputra river system. Glob Biogeochem Cycles 20:1–12

    Article  Google Scholar 

  • Becker JA, Bickle MJ, Galy A, Holland TJB (2008) Himalayan metamorphic CO2fluxes: quantitative constraints from hydrothermal springs. Earth Planet Sci Lett 265:616–629

    Article  CAS  Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  CAS  Google Scholar 

  • Berner U, Poggenburg J, Faber E, Quadfasel D, Frische A (2003) Methane in ocean waters of the Bay of Bengal: its sources and exchange with the atmosphere. Deep Sea Res II 50:925–950

    Article  CAS  Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud J-N (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Article  CAS  Google Scholar 

  • Beyssac O, Bollinger L, Avouac J-P, Goffe B (2004) Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth Planet Sci Lett 225:233–241

    Article  CAS  Google Scholar 

  • Blasco F, Bellan MF, Aizpuru M (1996) A vegetation map of tropical continental Asia at scale 1.5 million. J Veg Sci 7:623–634

    Article  Google Scholar 

  • Broecker WS, Toggweiler JR, Takahashi T (1980) The Bay of Bengal – a major nutrient source for the deep Indian Ocean. Earth Planet Sci Lett 49:506–512

    Article  CAS  Google Scholar 

  • Burdige DJ (2005) Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob Biogeochem Cycles 19:4011

    Article  Google Scholar 

  • Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    Article  CAS  Google Scholar 

  • Cai W-J, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52:123–131

    Article  CAS  Google Scholar 

  • Cochran JR, Stow DAV, Auroux C, Amano K, Balson PS, Boulegue JJ, Brass GW, Corrigan J, Gartner S, Hall S, Iaccarino S, Ishizuka T (1989) Leg 116 distal Bengal fan. Ocean Drilling Program, College Station, TX

    Google Scholar 

  • Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound-specific d13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem 21:619–627

    Article  CAS  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, New York

    Google Scholar 

  • Dobremez JF et al (1978) Carte écologique du Népal 1/250 000. University of Grenoble, Grenoble

    Google Scholar 

  • Ebelmen JJ (1845) Sur les produits de la décomposition des espèces minérales de la famille des silicates. Ann Mines 7:3–66

    Google Scholar 

  • Evans MJ, Derry LA, France-Lanord C (2008) Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem Geophys Geosyst 9:Q04021

    Google Scholar 

  • France-Lanord C, Derry LA (1994) δ13C of organic carbon in the Bengal Fan: source evolution and transport of C3 and C4 plant carbon to marine sediments. Geochim Cosmochim Acta 58:4809–4814

    Article  CAS  Google Scholar 

  • France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390:65–67

    Article  CAS  Google Scholar 

  • Freeman KH, Colarusso LA (2001) Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochim Cosmochim Acta 65:1439–1454

    Article  CAS  Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31–60

    Article  CAS  Google Scholar 

  • Galy A, France-Lanord C (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology 29:23–26

    Article  CAS  Google Scholar 

  • Galy V, France-Lanord C, Beyssac O, Faure P, Kudrass H, Palhol F (2007) Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450:407–410

    Article  CAS  Google Scholar 

  • Galy V, Beyssac O, France-Lanord C, Eglinton TI (2008a) Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322:943–945

    Article  CAS  Google Scholar 

  • Galy V, France-Lanord C, Lartiges B (2008b) Loading and fate of particulate organic carbon from the Himalaya to the Ganga–Brahmaputra delta. Geochim Cosmochim Acta 72:1767–1787

    Article  CAS  Google Scholar 

  • Galy V, François L, France-Lanord C, Faure P, Kudrass H, Palhol F, Singh SK (2008c) C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quatern Sci Rev 27:1396–1409

    Article  Google Scholar 

  • Garrels RM, Lerman A, Mackenzie FT (1976) Controls of atmospheric O2and CO2: past, present and future. Am Sci 64:306–315

    Google Scholar 

  • Goni MA, Monacci N, Gisewhite R, Ogston A, Crockett J, Nittrouer C (2006) Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea). Estuar Coast Shelf Sci 69:225–245

    Article  Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc Lond B Biol Sci 361:931–950

    Article  CAS  Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    Article  CAS  Google Scholar 

  • Hilton RG, Galy A, Hovius N (2008a) Riverine particulate organic carbon from an active mountain belt: the importance of landslides. Glob Biogeochem Cycles 22:1–12

    Article  Google Scholar 

  • Hilton RG, Galy A, Hovius N, Chen M-C, Horng M-J, Chen H (2008b) Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat Geosci 1:759–762

    Article  CAS  Google Scholar 

  • Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI (1997) Loss of organic matter from riverine particules in deltas. Geochim Cosmochim Acta 61:1507–1511

    Article  CAS  Google Scholar 

  • Ludwig W, Probst J-L, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Glob Biogeochem Cycles 10:23–41

    Article  CAS  Google Scholar 

  • Marty B, Tolstikhin IN (1998) CO2fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145:233–248

    Article  CAS  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    Article  CAS  Google Scholar 

  • Meyers PA, Dickens GR (1992) Accumulation of organic matter in sediments of the Indian Ocean: a synthesis of results from scientific deep sea drilling. In: Duncan RA, Rea DK, Kidd RB, von Rad U, Weissel JK (eds) Synthesis of results from scientific drilling in the Indian Ocean. American Geophysical Union

    Google Scholar 

  • Milliman JD, Syvitski PM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Perrier F, Richonb P, Rajaured S, France-Lanord C, Revil A (2009) A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth Planet Sci Lett 278:198–207

    Article  CAS  Google Scholar 

  • Pierson-Wickmann A-C, Reisberg L, France-Lanord C, Kudrass H (2001) Os-Sr-Nd results from sediments in the Bay of Bengal: implications for sediment transport and the marine Os record. Paleoceanography 16:435–444

    Article  Google Scholar 

  • Poynter J, Eglinton G (1990) Molecular composition of three sediments from Hole 717c: the Bengal Fan. In: Cochran JR, Stow DAV (eds) Proceedings of the ODP, science research. Ocean Drilling Program, College station, TX

    Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122

    Article  CAS  Google Scholar 

  • RSP (1996) Spatial representation and analysis of hydraulic and morphological data. Water Resources Planning Organization (WARPO)

    Google Scholar 

  • Rubey WW (1951) Geologic history of sea water. Bull Geol Soc Am 62:1111–1148

    Article  CAS  Google Scholar 

  • Satterberg J, Arnarson TS, Lessard EJ, Keil RG (2003) Sorption of organic matter from four phytoplankton species to montmorillonite, chlorite and kaolinite in seawater. Mar Chem 81:11–18

    Article  CAS  Google Scholar 

  • Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int J Earth Sci 88:599–606

    Article  Google Scholar 

  • Scott DT, Baisden WT, Davies-Colley R, Gomez B, Hicks DM, Page MJ, Preston NJ, Trustrum NA, Tate KR, Woods RA (2006) Localized erosion affects national carbon budget. Geophys Res Lett 33:1–4

    Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Sabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Suckow A, Morgenstern U, Kudrass H-R (2001) Abslolute dating of recent sediments in the cyclone-influenced shelf area off Bangladesh: comparison of Gamma spectrometric (137Cs, 210Pb, 228Ra), radiocarbon, and 32Si ages. Radiocarbon 43:917–927

    CAS  Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feed back mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valier Galy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Galy, V., France-Lanord, C., Beyssac, O., Lartiges, B., Rhaman, M. (2010). Organic Carbon Cycling During Himalayan Erosion: Processes, Fluxes and Consequences for the Global Carbon Cycle. In: Lal, R., Sivakumar, M., Faiz, S., Mustafizur Rahman, A., Islam, K. (eds) Climate Change and Food Security in South Asia. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9516-9_12

Download citation

Publish with us

Policies and ethics