Skip to main content

The control of eriophyoid mites: state of the art and future challenges

  • Chapter
Eriophyoid Mites: Progress and Prognoses

Abstract

The superfamily of the Eriophyoidea is a large and diverse group of mites, including a number of species of economic importance, mainly on perennial plants in agriculture and forestry. This review focuses on the economic importance and pest status of this group of mites, with emphasis on some genera. The available acaricide portfolio is reviewed and the influence of EU legislation policy on the sustainable control of Eriophyoidea is investigated. Possible generic guidelines for sustainable control and resistance management with special reference to the European situation are discussed. Recent advances in biological and integrated control of eriophyid mite pests and the implementation of these techniques in crops are explored. Furthermore, the relevance of studies on behaviour, epidemiology and diagnostics in general terms and as a strategic necessity is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah AA, Zhang Z-Q, Masters GJ, McNeill S (2001) Euseius finlandicus (Acari: Phytoseiidae) as a potential biocontrol agent against Tetranychus urticae (Acari: Tetranychidae): life history and feeding habits on three different types of food. Exp Appl Acarol 25:833–847

    Article  Google Scholar 

  • Abou-Awad BA, El-Banhawy EM (1995) Susceptibility of the tomato russet mite, Aculops lycopersici in Egypt to methamidiphos, pyridaphenthion, cypermethrin, dicofol and fenarimol. Exp Appl Acarol 1:11–15

    Article  Google Scholar 

  • Abou-Awad BA, El-Sherif AA, Hassan MF, Abou-Elela MM (1998a) Life history and life table of Amblyseius badryi, as a specific predator of eriophyid grass mite (Acari: phytoseiidae: Eriophyidae). Z Pflanzenk Pflanzensch 105:422–428

    Google Scholar 

  • Abou-Awad BA, El-Sherif AA, Hassan MF, Abou-Elela MM (1998b) Laboratory studies on development, longevity, fecundity and predation of Cydnoseius negevi (Swirski & Amitai) (Acari; Phytoseiidae) with to mite species as prey. Z Pflanzenk Pflanzensch 105:429–433

    Google Scholar 

  • Abou-Awad BA, Korayem AM, Hassan MF, Abou-Elela MM (2001) Life history of the predatory mite Lasioseius athiasae (Acari, Ascidae) on various kinds of food substances: a polypeptide analysis of prey consideration. J Appl Entomol 125:125–130

    Article  Google Scholar 

  • Alves SB, Tamai MS, Rossi LS, Castigliono E (2005) Beauveria bassiana pathogenicity to citris rust mite Phyllocoptruta oleivora. Exp Appl Acarol 37:117–122

    Article  PubMed  Google Scholar 

  • Angeli G, Rizzi C, Giuliani G, Tomasi C, Baldessari M (2008) Valide alternative per il controllo dell’eriofide del melo. Informatore Agrario 64(23):68–71

    Google Scholar 

  • Aratchige NS, Sabelis MW, Lesna I (2007) Plant structural changes due to herbivory: do changes in Aceria-infested coconut fruits allow predatory mites to move under the perianth? Exp Appl Acarol 43:97–107

    Article  PubMed  Google Scholar 

  • Argov Y, Amitai S, Beattie GAC, Gerson U (2002) Rearing, release and establishment of imported predatory mites to control citrus rust mite in Israel. Biocontrol 47:399–409

    Article  Google Scholar 

  • Arthropod Pesticide Resistance Database: http://www.pesticideresistance.org/DB

  • Auger P, Bonafos R, Guichou S, Kreiter S (2003) Resistance to fenazaquin and tebufenpyrad in Panonychus ulmi Koch (Acari: Tetranychidae) populations from South of France apple orchards. Crop Prot 22:1039–1044

    Article  CAS  Google Scholar 

  • Ay R, Gurkan MO (2005) Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae) from Turkey. Phytoparasitica 33:237–244

    Article  CAS  Google Scholar 

  • Baker RT (1979) Insecticide resistance in the peach silver mite Aculus cornutus (Banks). N Z J Exp Agric 7:405–406

    CAS  Google Scholar 

  • Balazy S, Mietkiewski R, Thaczuk C, Wegensteiner R, Wrzosek M (2008) Diversity of acaropathogenic fungi in Poland and other European countries. Exp Appl Acarol 46:53–70

    Article  PubMed  Google Scholar 

  • Bergh JC, Rugg D, Jansson RK, McCoy CW, Robertson JL (1999) Monitoring the susceptibility of citrus rust mite (Acari: Eriophyidae) populations to abamectin. J Econ Entomol 92:781–787

    CAS  PubMed  Google Scholar 

  • Bernard MB, Horne PA, Hoffmann AA (2005) Eriophyoid mite damage in Vitis vinifera (grapevine) in Australia: Calepitrimerus vitis and Colomerus vitis (Acari: Eriophyidae) as the common cause of the widespread ‘Restricted Spring Growth’ syndrome. Exp Appl Acarol 35:83–109

    Article  PubMed  Google Scholar 

  • Bielza P, Denholm I, Ioannidis P, Sterk G, Leadbeater A, Leonard P, Nistrup Jorgensen L (2008) Declaration of Ljubljana. Outlooks on Pest Manag 19(6):246–248

    Article  Google Scholar 

  • Bonafas R, Serrano E, Auger P, Kreiter S (2007) Resistance to deltamethrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some population of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari: Phytoseiidae) from vineyards in south-west of France. Crop Prot 26:169–172

    Article  CAS  Google Scholar 

  • Brennan R, Jorgensen L, Gordon S, Loades K, Hackett C, Russell J (2009) The development of a PCR-based marker linked to resistance to the blackcurrant gall mite. Theor Appl Genet 118:205–211

    Article  CAS  PubMed  Google Scholar 

  • Bretschneider T, Fischer R, Nauen R (2007) Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inhibitors). In: Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley–VCH Verlag GmbH & Co, Weinheim, pp 909–925

    Google Scholar 

  • Brodeur J, Bouchard A, Turcotte G (1997) Potential of four species of predatory mites as biological control agents of the tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyidae). Can Entomol 129:1–6

    Article  Google Scholar 

  • Campos F, Krupa DA, Dubas RA (1996) Susceptibility of populations of two spotted spider mites (Acari: Tetranychidae) from Florida, Holland and the Canary Island to abamectin and characterization of abamectin resistance. J Econ Entomol 89:594–601

    CAS  Google Scholar 

  • Carew ME, Goodisman MAD, Hoffmann AA (2004) Species status and population genetic structure of grapevine eriophyoid mites. Entomol Exp Appl 111:87–96

    Article  Google Scholar 

  • Castagnoli M, Oldfield GN (1996) Other fruit trees and nut trees. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 543–560

    Chapter  Google Scholar 

  • Castagnoli M, Simoni S, Liguori M (2003) Evaluation of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) as a candidate for the control of Aculops lycopersici (Tyron) (Acari Eriophyoidea): a preliminary study. Redia 86:97–100

    Google Scholar 

  • Castagnoli M, Lewandowski M, Łabanowski GS, Simoni S, Soika GM (2009) An insight into some relevant aspects concerning eriophyoid mites inhabiting forests, ornamental trees and shrubs. Exp Appl Acarol. doi:10.1007/s10493-009-9313-8

    Google Scholar 

  • Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Techn 10:357–384

    Article  Google Scholar 

  • Childers CC, Eastbrook MA, Solomon MG (1996) Chemical control of eryophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eryophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 695–726

    Chapter  Google Scholar 

  • Childers CC, Villanueva R, Aguilar H, Chewning R, Michaud JP (2001) Comparative residual toxicities of pesticides to the predator Agistemus industani (Acari: Stigmaeidae) on citrus in Florida. Exp Appl Acarol 25:461–474

    Article  CAS  PubMed  Google Scholar 

  • Clark JM, Scott JG, Campos F, Bloomquist JR (1995) Resistance to avermectins—extent, mechanisms and management implications. Annu Rev Entomol 40:1–30

    Article  CAS  PubMed  Google Scholar 

  • Conijn C (2006) Gewijzigde luchtsamenstelling bestrijdt ongedierte in bloembollenbewaarcel. Gewasbescherming 37:1–7

    Google Scholar 

  • Courtin O, Fauvel G, Leclant F (2000) Temperature and relative humidity effects on egg and nymphal development of Aceria tulipae (K.) (Acari: Eriophyidae) on garlic leaves (Allium sativum L.). Ann Appl Biol 137:207–211

    Article  Google Scholar 

  • Coyle DR (2002) Effects of clone, silvicultural, and miticide treatments on cottonwood leafcurl mite (Acari: Eryophyidae) damage in plantation Populus. Environ Entomol 31:100–1008

    Article  Google Scholar 

  • Croft BA, McRae IV (1993) Biological control of apple mites. Impact of Zetzellia mali (Acari, Stigmaeidae) on Typhlodromus pyri and Metaseiulus occidentalis (Acari, Phytoseiidae). Environ Entomol 22:865–887

    Google Scholar 

  • Croft BA, Slone DH (1998) Perturbation of regulated apple mites: immigration and pesticide effects on outbreaks of Panonychus ulmi and associated mites (Acari: Tetranychidae, Eriophyidae, Phytoseiidae and Stigmaeidae). Environ Entomol 27(6):1548–1556

    Google Scholar 

  • Curthbertson AGS, Murchie AK (2004) The phenology, oviposition and feeding rate of Anystis baccarum, a predatory mite in Bramley apple orchards in Northern Ireland. Exp Appl Acarol 34:367–373

    Google Scholar 

  • Curthbertson AGS, Murchie AK (2006) Environmental impact of an orchard winter wash and early season pesticide applications on both a beneficial and a pest mite species in Bramley apple orchards. Int J Environ Sci Tech 3:333–339

    Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides an mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • De Maeyer L, Schmidt HW, Peters D (2002) Envidor—a new acaricide for IPM in pomefruit orchards. Pflanzenschutz-Nachrichten Bayer 55:211–236

    Google Scholar 

  • De Vis RJ, de Moraes GJ, Bellini MR (2006) Initial screening of little known predatory mites in Brazil as potential pest control agents. Exp Appl Acarol 39:115–125

    Article  PubMed  Google Scholar 

  • Dekeyser M (2005) Acaricide mode of action. Pest Manag Sci 61:103–110

    Article  CAS  PubMed  Google Scholar 

  • Duso C, de Lillo E (1996) Grape. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 571–582

    Chapter  Google Scholar 

  • Duso C, Pasini M (2003) Distribution of the predatory mite Amblyseius andersoni (Acari: Phytoseiidae) on different apple cultivars. Anz Schädl—J Pest Sci 76:33–40

    Google Scholar 

  • Duso C, Castagnoli M, Simoni S, Angeli G (2008) The impact of eriophyoids on crops: new and old case studies. In: Bertrand M, Kreiter S, McCoy KD, Migeon A, Navajas M, Tixier M-S, Vial L (eds) Integrative acarology. Proceedings of the 6th European Congress. Montpellier, 21–25 July

    Google Scholar 

  • Duso C, Castagnoli M, Simoni S, Angeli G (2009) The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Exp Appl Acarol. doi:10.1007/s10493-009-9300-0

    Google Scholar 

  • Easterbrook MA (1996) Damage and control of eriophyoid mites in apple and pear. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 527–541

    Chapter  Google Scholar 

  • Edgington S, Fernando LCP, Jones K (2008) Natural incidence and environmental profiling of the mite-pathogenic fungus Hirsutella thompsonii Fisher for control of the coconut mite in Sri Lanka. Int J Pest Manag 54:123–127

    Article  Google Scholar 

  • Fernando LCP, Manoj P, Hapuarachchi DCL, Edington S (2007) Evaluation of four isolates of Hirsutella thompsonii against coconut mite (Aceria guerreronis) in Sri Lanka. Crop Prot 26:1062–1066

    Article  Google Scholar 

  • Frei A, Blair MW, Cardona C, Beebe SC, Gu H, Dorn S (2005) QTL mapping of resistance to Thrips palmi (Karny) in common bean. Crop Sci 45:379–387

    Article  CAS  Google Scholar 

  • Galvão AS, Gondim MGC Jr, de Moreas GJ, de Oliveira JV (2007) Biologia de Amblyseius largoensis (Muma)(Acari: Phytoseiidae), um potencial predator de Aceria guerreronis Keifer (Acari: Eriophyidae) em Coqueiro. Neotrop Entomol 36:465–470

    Article  PubMed  Google Scholar 

  • Gamliel-Atinsky E, Freeman S, Maymon M, Belausov E, Ochoa R, Bauchan G, Skoracka A, Peña J, Palevsky E (2009) The role of eriophyoids in fungal pathogen epidemiology, mere association or true interaction? Exp Appl Acarol. doi:10.1007/s10493-009-9302-y

    PubMed  Google Scholar 

  • Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods: an index of cases reported through 1989. Food and Agricultural Organisation of the United Nations, Rome, Italy

    Google Scholar 

  • Gerson U, Weintraub PG (2007) Mites for the control of pests in protected cultivation. Pest Manag Sci 63(7):658–676

    Article  CAS  PubMed  Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Boston, Blackwell Science 539pp

    Book  Google Scholar 

  • Gerson U, Gafni A, Paz Z, Sztejnberg A (2008) A tale of three acaropathogenic fungi in Israel: Hirsutella, Meira and Acaromyces. Exp Appl Acarol 46:183–194

    Article  CAS  PubMed  Google Scholar 

  • Hall DG, Childers CC, Eger JE (2005) Effects of reducing sample size on density estimates of citrus rust mite (Acari: Eriophyidae) on citrus fruit: simulated sampling. J Econ Entomol 98:1048–1057

    Article  PubMed  Google Scholar 

  • Hall DG, Childers CC, Eger JE (2007) Binomial sampling to estimate rust mite (Acari: Eriophyidae) densities on orange fruit. J Econ Entomol 100:233–240

    Article  PubMed  Google Scholar 

  • Hansen BG, Halkier BA, Kliebenstein DJ (2007) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77

    Google Scholar 

  • Haque MM, Kawai A (2003) Effect of temperature on development and reproduction of the tomato russet mite, Aculops lycopersici (Massee) (Acari: Eriophyidae). Appl Entomol Zool 38:97–101

    Article  Google Scholar 

  • Hardman JM, Franklin JL, Moreau DL, Bostanian NJ (2003) An index for selective toxicity of miticides to phytophagous mites and their predators based on orchard trials. Pest Manag Sci 59(12):1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Herron GA, Rophail J (1998) Tebufenpyrad (Pyranica(R)) resistance detected in two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) from apples in western Australia. Exp Appl Acarol 22:633–641

    Article  CAS  Google Scholar 

  • Herron GA, Rophail J, Wilson LJ (2001) The development of bifenthrin resistance in two-spotted spider mite (Acari: Tetranychidae) from Australian cotton. Exp Appl Acar 25:301–310

    Article  CAS  Google Scholar 

  • Hirata KY, Kawamura Y, Kudo M, Igarasgi H (1995) Development of a new acaricide, pyridaben. J Pest Sci 20:177–179

    CAS  Google Scholar 

  • Hollingworth RM, Ahammadsahib KI (1995) Inhibitors of respiratory complex I: mechanisms, pesticidal actions and toxicology. Rev Pestic Toxicol 3:277–302

    CAS  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley, CA 614pp

    Google Scholar 

  • Jones AT (2000) Black currant reversion disease—the probable causal agent, eriophyid mite vectors, epidemiology and prospects for control. Virus Res 71:71–84

    Article  CAS  PubMed  Google Scholar 

  • Kahu K, Janes H, Luik A, Klaas L (2009) Yield and fruit quality of organically cultivated blackcurrant cultivars. Acta Agric Scand B- Soil Plant Sci 59:63–69

    Google Scholar 

  • Kalaisekar A, Naido VG, Rao NV (2000) Citrus rust mite, Phyllocoptruta oleivora (Ashmead) (Eriophyidae: Acarina): effects of its damage on fruit quality and its chemical control. Ind J Plant Prot 28:132–134

    CAS  Google Scholar 

  • Kang SG, Koo BJ, Lee T, Chang MU (2007) Allexivirus transmitted by eriophyid mites in garlic plants. J Microbiol Biotech 17:1833–1840

    CAS  Google Scholar 

  • Kawai A, Haque M (2004) Population dynamics of tomato russet mite Aculops lycopersici (Massee) and its natural enemy, Homeopronematus anconai (Baker). JARQ 38:161–166

    Google Scholar 

  • Kidd H (2002) Insect Pests—crumbling defences and new approaches. Pestic Outlook 13:201–203

    Article  Google Scholar 

  • Knott CM (2007) The impact of European pesticide regulation on product availability for crops. Proc BCPC 1:290–291

    Google Scholar 

  • Kondo A, Hiramatsu T (1999) Analysis of peach tree damage caused by peach silver mite, Aculus fockeui (Nalepa et Trouessart) (Acari: Eriophyidae). Japan J Appl Entomol Zool 43:189–193

    Google Scholar 

  • Konno T, Kuriyama K, Hamaguchi H, Kujihara O (1990) Fenpyroximate (NNI-850) a new acaricide. Proc BCPC-Pests and Diseases, 71–78

    Google Scholar 

  • Kyomura N, Fukuchi T, Kohyama Y, Motojima S (1990) Biological characteristics of new acaricides MK-239. Proc BCPC-Pests and Diseases 5:5–62

    Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC Jr, de Moreas GJ, Hanna R, Schausberger P (2007) Life history of the predatory mites Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidates for biological control of Aceria guerreronis. Exp Appl Acarol 43:49–61

    Article  CAS  PubMed  Google Scholar 

  • Lawson-Balagbo LM, Gondim MGC, de Moraes GJ, Hanna R, Schausberger P (2008) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96

    Article  CAS  PubMed  Google Scholar 

  • Leite GLD, Picanço M, Guedes RNC, Zanuncio JC (1999) Influence of canopy height and fertilization levels on the resistance of Lycopersicon hirsutum to Aculops lycopersici (Acari: Eriophyidae). Exp Appl Acarol 23:633–642

    Article  Google Scholar 

  • Lesna I, Conijn CGM, Sabelis M (2004) From biological control to biological insight: rust-mite induced change in bulb morphology, a new mode of indirect plant defence. Phytophaga 14:285–291

    Google Scholar 

  • Lindquist EE, Sabelis MW, Bruin J (1996) Eriophyoid mites—their biology, natural enemies and control world crop pest series vol 6. Elsevier Science Publishers, Amsterdam, The Netherlands 790pp

    Google Scholar 

  • Longhurst C, Bacci L, Buendia J, Hatton CJ, Petitprez J, Tsakonas P (1992) Fenazaquin, a novel acaricide for the management of spider mites in a variety of crops. Proc BCPC-Pests and Diseases 5:1–58

    Google Scholar 

  • McCaffery A, Nauen R (2006) The insecticide resistance action committee (IRAC): public responsibility and enlightened industrial self-interest. Outlooks P Manag 17:11–14

    Google Scholar 

  • McCoy CW (1996a) Stylar feeding injury and control of eriophyoid mites in citrus. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 513–526

    Chapter  Google Scholar 

  • McCoy CW (1996b) Pathogens of Eriophyoids. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam, pp 481–490

    Chapter  Google Scholar 

  • McMurtry JA, Croft BA (1997) Life-style of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    Article  CAS  PubMed  Google Scholar 

  • Messing RH, Croft BA (1996) Pesticide resistance in eriophyoid mites, their competitors and predators. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eryophyoid mites- Their biology. natural enemies and control. Elsevier, Amsterdam, pp 695–726

    Google Scholar 

  • Metcalf RL (1980) Changing role of insecticides in crop protection. Annu Rev of Entomol 25:219–256

    Article  CAS  Google Scholar 

  • Metwally AB, Abou-Awad BA, Al-Azzazy MMA (2005) Life table and prey consumption on the predatory mite Neoseiulus cydnodactylon Shehata and Zacher (Acari: Phytoseiidae) with three mite species as prey. Z Pflanzenk Pflanz 112:276–286

    Google Scholar 

  • Momen FM, Abdel-Khalek A (2008) Effect of the tomato rust mite Aculops lycopersici (Acari: Eriophyidae) on the development and reproduction of three predatory phytoseiid mites. Int J Trop Insect Sci 28:53–57

    Article  Google Scholar 

  • Monfreda R, Lekveishvili M, Petanovic R, Amrine JW Jr (2009) Collection and detection of eriophyoid mites. Exp Appl Acarol. doi:10.1007/s10493-009-9315-6

    PubMed  Google Scholar 

  • Moore D, Howard FW (1996) Coconuts. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 561–570 790pp

    Chapter  Google Scholar 

  • Nauen R, Stumpf N, Elbert A, Zebitz CPW, Kraus W (2001) Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Manag Sci 57:253–261

    Article  CAS  PubMed  Google Scholar 

  • Nauen R, Schnorbach HJ, Elbert A (2005) The biological profile of spiromesifen (Oberon): a new tetronic acid insecticide/acaricide. Pflanzenschutz Nachr Bayer 58:417–440

    CAS  Google Scholar 

  • Nauen R, Leadbeater A, Thompson A (2008) Proposal on the revision of EU Directive 91/414. Outlooks on Pest Management 19(4):150–151

    Article  Google Scholar 

  • Navajas M, Navia D (2009) DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Exp Appl Acarol. doi:10.1007/s10493-009-9301-z

    Google Scholar 

  • Navia D, de Moraes GJ, Roderick G, Navajas M (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull Entomol Res 95:505–516

    Article  CAS  PubMed  Google Scholar 

  • Negloh K, Hanna R, Schausberger P (2008) Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biol Control 46:523–531

    Article  Google Scholar 

  • Oldfield GN, Proeseler G (1996) Eriophyoid mites as vectors of plant pathogens. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 259–275 790pp

    Chapter  Google Scholar 

  • Omoto C, Dennehy TJ, McCoy CW, Crane SE, Long JW (1994) Detection and characterisation of the interpopulation variation of citrus rust mite resistance to dicofol in Florida citrus. J Econ Entomol 84:566–572

    Google Scholar 

  • Omoto C, Dennehy TJ, McCoy CW, Crane SE, Long JW (1995) Interface between citrus rust mite (Acari: Eryophyidae) and dicofol- implication for resistance management. J Econ Entomol 88:1129–1137

    CAS  Google Scholar 

  • Ozman-Sullivan SK (2006) Life history of Kampimodromus aberrans as a predator of Phytoptus avellanae (Acari: Phytoseiidae, Phytoptidae). Exp Appl Acarol 38:15–23

    Article  PubMed  Google Scholar 

  • Ozman-Sullivan SK, Akca I (2005) Efficiency of pesticides against big bud mites (Phytoptus avellanae Nal, and Cecidophyopsis vermiformis Nal, Acarina: Eryophyoidea) on hazelnut. Acta Hortic 688:393–399

    Google Scholar 

  • Paz Z, Gerson U, Sztejnberg A (2007) Assaying three new fungi against citrus mites in the laboratory, and a field trial. Biocontrol 52:855–862

    Article  Google Scholar 

  • Perring T (1996) Vegetables. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 593–606

    Chapter  Google Scholar 

  • Qu SC, Tashiro NE, Etoh T, Sadamatsu M (1997) Occurrence of dithiocarbamate-resistant strain and its susceptibilities to several chemicals in the pink citrus rust mite, Aculops pelekassi (Keifer) in Saga Prefecture. Kyushu Byogaichu Kenkyukaiho 43:125–129

    CAS  Google Scholar 

  • Royalty and Perring (1996) Nature of damage and its assessment. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 493–508

    Chapter  Google Scholar 

  • Sabelis MW (1996) Phytoseiidae. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Amsterdam, Elsevier Science Publishing, pp 427–456

    Chapter  Google Scholar 

  • Scarpellini JR, Clari AR (1999) Control of the citrus rust mite Phyllocoptruta oleivora Ashmead, 1879 (Acari: Eriophyidae) with diflubenzuron alone or in association with sulphur, in citrus. Redia 74:15–23

    CAS  Google Scholar 

  • Smissaert HR (1964) Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science 143:129–131

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Papacek DF (1991) Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in south-east Queensland: control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effect of pesticides, alternative host plants and augmentative release. Exp Appl Acarol 12:195–217

    Article  CAS  Google Scholar 

  • Smith D, Smith NJ, Smith KM (1998) Effect of abamectin on citrus rust mite Phyllocoptruta oleivora and brown citrus rust mite Tegolohus australis and the scale natural enemies Aphytis lingnenensis and Chilocorus circumdatus on oranges. Plant Prot Q 13:136–139

    CAS  Google Scholar 

  • Spieser F, Graf B, Walther P, Noesberger J (1998) Impact of apple rust mite (Acari: Eriophyidae) feeding on apple leaf gas exchange and leaf color associated with changes in leaf tissue. Env Entomol 27(5):1149–1156

    Google Scholar 

  • Sreerema Kumar PS, Singh L (2002). Development of ‘Mycohit’, the first mycoacaricide based exclusively on Hirsutella thompsonii, for suppressing the coconut mite in India. In: Reddy SM, Redy SR, Singarachary MA, Girisham S (eds). Proceedings, national symposium on bioinoculants for sustainable agriculture and forestry. India, 16–18 Feb 2001, pp 209–213

    Google Scholar 

  • Sreerema Kumar PS, Singh L (2008) Enabling mycelia application of Hirsutella thompsonii for managing the coconut mite. Exp Appl Acarol 46:169–182

    Article  Google Scholar 

  • Stansly PA, Riefer RE, Quereshi JA (2007) Acaricidal control of the citrus rust mite, 2006. Arthrop Manag Tests 32:D12

    CAS  Google Scholar 

  • Stoeckli S, Mody K, Patocchi A, Kellerhals M, Dorn S (2009) Rust mite resistance in apple assessed by quantitative trait loci analysis. Tree Genet Genomes 5(1):257–267

    Article  Google Scholar 

  • Stumpf N, Nauen R (2001) Cross-resistance, inheritance and biochemistry of METI-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94:1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pest Biochem Physiol 72:111–121

    Article  CAS  Google Scholar 

  • Sujatha A, Kumar DA, Rao NBVC, Rao DVR (2004) Evaluation of certain new chemicals against coconut eriophyid mite, Aceria guerreronis (K.). A.P. Pestology 28:7–11

    CAS  Google Scholar 

  • Thistlewood HMA, Clements DR, Harmsen R (1996) Stigmaeidae. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science Publishing, Amsterdam, pp 457–470

    Chapter  Google Scholar 

  • Törnqvist L (2007) The commission perspective on the new regulation. Proceedings of the BCPC conference vol 1. pp 284–285

    Google Scholar 

  • Tsagkarakou A, Van Leeuwen T, Khajehali J, Ilias A, Grispou M, Williamson MS, Tirry L, Vontas J (2009) Identification of pyrethroid resistance mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari:Tetranychidae). Insect Mol Biol 18:583–593

    Article  CAS  PubMed  Google Scholar 

  • Van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560

    Article  PubMed  Google Scholar 

  • van der Linden A, Nouwens F (2005) Augmentation of predatory mites in Dutch nursery stock. Integrated control in protected crops, temperate climate. IOBC/wprs. Bulletin 28:279–281

    Google Scholar 

  • Van Leeuwen T, Van Pottelberge S, Tirry L (2005) Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manag Sci 61:499–507

    Article  PubMed  CAS  Google Scholar 

  • van Lenteren JC (2000) A greenhouse without pesticides: fact or fantasy? Crop Prot 19:375–384

    Article  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2008) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23–31

    Article  PubMed  CAS  Google Scholar 

  • Villanueva RT, Gagne R, Childers CC (2005) Larval Cryptothelea gloverii (Lepidoptera: Psychidae), an arthropod predator and herbivore on Florida citrus. Exp Apl Acarol 36:83–92

    Article  Google Scholar 

  • Villanueva RT, Rodrigues JCV, Childers CC (2006) Two species of Cecidomyiidae predacious on citrus rust mite, Phyllocoptruta oleivora, on Florida citrus. Fla Entomol 89:161–167

    Article  Google Scholar 

  • Voss G, Matsumura F (1964) Resistance to organophosphorus compounds in the two-spotted spider mite: two different mechanisms of resistance. Nature 202:319–320

    Article  CAS  PubMed  Google Scholar 

  • Wachendorff U, Bruck E, Elbert A, Fisher R, Nauen R, Stumpf N, Tiemann R (2000) BAJ2740, a novel broad spectrum acaricide. Proc BCPC—Pests & Diseases 1:53–58

    Google Scholar 

  • Wachendorff U, Nauen R, Schnorbach HJ, Rauch N, Elbert A (2002) The biological profile of spirodiclofen (Envidor®)–a new selective tetronic acid acaricide. Pflanzenschutz-Nachrichten Bayer 55:149–176

    CAS  Google Scholar 

  • Walde SJ, Hardman JM, Magagula CN (1997) Direct and indirect species interactions influencing within-season dynamics of apple rust mite, Aculus schlechtendali (Acari: Eriophyidae). Exp Appl Acarol 21(9):587–614

    Article  Google Scholar 

  • Walgenbach JF, Schoof SC (2006) European red mite control on apples, 2005. Arthrop Manag Tests 31:A24

    CAS  Google Scholar 

  • Walston AT, Farnsworth A, Farnsworth J, Smith L, McCarty G, Riedl H (2005) Pear rust mite control on pears. Arthrop Manag Tests 30:A37

    CAS  Google Scholar 

  • Walston AT, Adams C, Nance L, Richardson M, McCarty G, Riedl H (2007) Pear rust control at pink and petal fall. Arthrop Manag Tests 32:A36

    CAS  Google Scholar 

  • Walton VM, Dreves AJ, Gent DH, James DG, Martin RR, Chambers U, Skinkis PA (2007) Relationship between rust mites Calepitrimerus vitis (Nalepa), bud mites Colomerus vitis (Pagenstecher) (Acari: Eriophyidae) and short shoot syndrome in Oregon vineyards. Int J Acarol 33(4):307–318

    Article  Google Scholar 

  • Webber J, Chapman RB, Worner SP (2008) Forecasting emergence and movement of overwintering hazelnut big bud mites from big buds. Exp Appl Acarol 45:39–51

    Article  PubMed  Google Scholar 

  • Witters J, De Bondt G, Desamblanx, Casteels H (2006) A preliminary survey of predatory mites of Tetranychidae in tree nurseries in Belgium. Abstract XII Internation Congress of Acarology. Amsterdam, The Netherlands, 21–26 August 2006

    Google Scholar 

  • Wood E, Latli B, Casida JE (1996) Fenazaquin acaricides specific binding sites in NADH: Ubiquinone oxidoreductase and apparently the ATP synthase stalk. Pest Biochem Physiol 54:135–145

    Article  CAS  Google Scholar 

  • Zhu S, Walker DR, Boerma HR, All JN, Parrott WA (2006) Fine mapping of a major insect resistance QTL in soybeen ant its interaction with minor resistance QTLs. Crop Sci 46:1094–1099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Leeuwen, T., Witters, J., Nauen, R., Duso, C., Tirry, L. (2009). The control of eriophyoid mites: state of the art and future challenges. In: Ueckermann, E.A. (eds) Eriophyoid Mites: Progress and Prognoses. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9562-6_11

Download citation

Publish with us

Policies and ethics