Skip to main content

Differences in foraging strategies between populations of the predatory mite Neoseiulus womersleyi: correlation between olfactory response and dispersal tendency

  • Conference paper
  • First Online:
Trends in Acarology
  • 2964 Accesses

Abstract

I investigated the relationship between olfactory response, patch-leaving tendency, predation rate, fecundity, and developmental time of 11 geographical populations and 13 isofemale strains of the predatory mite Neoseiulus womersleyi. Significant differences were found in all these traits and behaviors among the geographical populations and among the isofemale strains. A significant positive correlation was found only between the olfactory response and the patch-leaving tendency of geographical populations. There was no such relationship among the isofemale strains. These results suggest that the positive correlation between the behavioral traits among geographical populations was not caused by genetic factors. The difference in the behavioral traits and the correlation among geographical populations is discussed from an ecological point of view where foraging strategy is determined by both the olfactory response and the patch-leaving tendency

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • van Baalen M & Sabelis MW (1995) The milker-killer dilemma in spatially structured predator-prey interactions. Oikos 74: 391–400.

    Article  Google Scholar 

  • Bernstein C, Kacelnik A & Krebs JR (1991) Individual decisions and the distribution of predators in a patchy environment. II. The influence of travel costs and structure of the environment. Journal of Animal Ecology 60: 205–225.

    Article  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theory. Theoretical Population Biology 9: 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Dicke M (1994) Local and systemic production of volatile herbivoreinduced terpenoids: Their role in plant-carnivore mutualism. J. Plant Physiol. 143: 465–472.

    Article  CAS  Google Scholar 

  • Dicke M & Sabelis, M. W. 1988. How do plants obtain predatory mites as bodyguards? Neth. J. Zool. 38: 148–165.

    Article  Google Scholar 

  • Dicke M & Vet LEM (1999) Plant-carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore. Herbivores: Between Plants and Predators (ed. by H Olff, VK Brown & RH Drent), pp. 483–520. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J et al. (1990a) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. Journal of Chemical Ecology 16: 3091–3118.

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, van Beek TA, Posthumus MA et al. (1990b) Isolation and identification of volatile kairomone that affects acarine predatorprey interaction: Involvement of host plant in its production. Journal of Chemical Ecology 16: 381–396.

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Schütte, C & Dijkman H (2000) Change in behavioral response to herbivore-induced plant volatiles in a predatory mite population. Journal of Chemical Ecology 26: 1497–1514.

    Article  CAS  Google Scholar 

  • Ewing E (1979) Genetic variation in a heterogeneous environment. VII. Temporal and spatial heterogeneity in infinite populations. American Naturalist 114: 197–212.

    Article  Google Scholar 

  • Falconer DS (1989) Introduction to Quantitative Genetics, 3rd edn. Longman, New York, NY, USA.

    Google Scholar 

  • Gillespie JH & Turelli M (1989) Genotype-environment interactions and the maintenance of polygenic variation. Genetics 121: 129–138.

    CAS  PubMed Central  Google Scholar 

  • Hislop RG & Prokopy RJ (1981) Mite predator responses to prey and predator-emitted stimuli. Journal of Chemical Ecology 7: 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Jeppson LR, Keifer HH & Baker EW (1975) Mites Injurious to Economic Plants. University of California Press, Berkeley, CA, USA.

    Google Scholar 

  • Jia F, Margolies DC, Boyer JE & Charlton RE (2002) Genetic variation in foraging traits among inbred lines of a predatory mite. Heredity 89: 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Krebs JR, Ryan JC & Charnov EL (1974) Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behaviour 22: 953–964.

    Article  Google Scholar 

  • Lewis WJ & Nordlund DA (1985) Behavior-modifying chemicals to enhance natural enemy effectiveness. Biological Control in Agricultural IPM Systems (ed. by MA Hoy & DC Herzog), pp. 89–101. Academic Press, Orlando, FL, USA.

    Chapter  Google Scholar 

  • MacArthur RH & Pianka ER (1966) On optimal use of a patchy environment. American Naturalist 100: 603–609.

    Article  Google Scholar 

  • Mackay TFC, Hackett JB, Lyman RF et al. (1996) Quantitative genetic variation of odor-guided behavior in a natural population of Drosophila melanogaster. Genetics 144: 727–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T (2005) Correlation between olfactory responses, dispersal tendencies, and life-history traits of the predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) of eight local populations. Experimental and Applied Acarology 37: 67–82.

    Article  PubMed  Google Scholar 

  • Maeda T (2006) Genetic variation in foraging traits and life-history traits of the predatory mite Neoseiulus womersleyi (Acari: Phytoseiidae) among isofemale lines. Journal of Insect Behavior 19: 573–589.

    Article  Google Scholar 

  • Maeda T & Hinomoto N (2006a) Effects of laboratory rearing conditions on the predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae). I: Genetic diversity. International Journal of Acarology 32: 93–98.

    Article  Google Scholar 

  • Maeda T & Hinomoto N (2006b) Effects of laboratory rearing conditions on the predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae). II: Olfactory response. International Journal of Acarology 32: 99–102.

    Article  Google Scholar 

  • Maeda T & Takabayashi J (2001) Patch leaving decision of the predatory mite Amblyseius womersleyi (Acari: Phytoseiidae) based on multiple information from both inside and outside a prey patch. Journal of Insect Behavior 14: 829–839.

    Article  Google Scholar 

  • Maeda T & Takabayashi J (2005) Effects of foraging experiences on residence time of the predatory mite Neoseiulus womersleyi in a prey patch. Journal of Insect Behavior 18: 323–334.

    Article  Google Scholar 

  • Maeda T, Takabayashi J, Yano S & Takafuji A (1998) Factors affecting the resident time of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in a prey patch. Applied Entomology and Zoology 33: 573–576.

    Google Scholar 

  • Margolies DC, Sabelis MW & Boyer JE (1997) Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitation. Journal of Insect Behavior 10: 695–709.

    Article  Google Scholar 

  • Mayland H, Margolies DC & Charlton RE (2000) Local and distant prey-related cues influence when an acarine predator leaves a prey patch. Entomologia Experimentalis et Applicata 96: 245–252.

    Article  Google Scholar 

  • Parsons PA (1980) Isofemale strains and evolutionary strategies in natural populations. Evolutionary Biology 13: 175–217.

    Google Scholar 

  • Price PW, Bouton CE, Gross P et al. (1980) Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics 11: 41–65.

    Article  Google Scholar 

  • Pukall R, Schumann P, Schütte C et al. (2006) Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. International Journal of Systematic and Evolutionary Microbiology 56: 465–469.

    Article  CAS  PubMed  Google Scholar 

  • Rose MR (1982) Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63–78.

    Article  Google Scholar 

  • Sabelis MW & Dicke M (1985) Long-range dispersal and searching behaviour. Spider Mites: Their Biology, Natural Enemies and Control, Vol. 1B (ed. by W Helle & MW Sabelis), pp. 141–160. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Sall J, Creighton L & Lehman A (2004) JMP Start Statistics, 3rd edn. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • SAS (2002) JMP User’s Guide, version 5. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • Schmidt G (1976) Der Einfluss der von Beutetieren hinterlassenen Spuren auf Suchverhalten und Sucherfolg von Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae). Zeitschrift fuer Angewandte Entomologie 82: 216–218.

    Article  Google Scholar 

  • Schmidt G (1977) Untersuchungen der Faktoren, welche die Beutetiersuche und Wahl der Raubmilbe Phytoseiulus persimilis A-H. (Acarina: Phytoseiidae) bestimmen. PhD Dissertation, Institut fur Phytomedizin der Universität Hohenheim.

    Google Scholar 

  • Schütte C, van Baalen P, Dijkman H & Dicke M (1998) Change in foraging behavior of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomologia Experimentalis et Applicata 88: 295–300.

    Article  Google Scholar 

  • Schütte C, Kleijn PW & Dicke M (2006) A Novel Disease Affecting the Predatory Mite Phytoseiulus persimilis (Acari, Phytoseiidae): 1. Symptoms in Adult Females. Experimental and Applied Acarology 38: 275–297.

    Article  PubMed  Google Scholar 

  • Takabayashi J & Dicke M (1992) Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomologia Experimentalis et Applicata 64: 187–193.

    Article  Google Scholar 

  • Takabayashi J & Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends in Plant Sciences 1: 109–113.

    Article  Google Scholar 

  • Vet LEM & Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annual Review of Entomology 37: 141–172.

    Article  Google Scholar 

  • Wang Q, Gu H & Dorn S (2004) Genetic relationship between olfactory response and fitness in Cotesia glomerata (L.). Heredity 92: 579–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Maeda, T. (2010). Differences in foraging strategies between populations of the predatory mite Neoseiulus womersleyi: correlation between olfactory response and dispersal tendency. In: Sabelis, M., Bruin, J. (eds) Trends in Acarology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9837-5_42

Download citation

Publish with us

Policies and ethics