Skip to main content

Model-Based Segmentation and Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning

  • Chapter
  • First Online:
Computational Vision and Medical Image Processing

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 19))

Abstract

Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This treatment has been developed at the Lausanne University Hospital (CHUV) in collaboration with the Jules Gonin University Eye Hospital. It reduces the risk of long term complications in external beam radiation therapy[12].

  2. 2.

    By manual volume definition we mean the manual segmentation of organs at risk and tumor, when possible, in the CT that defines the treatment planning. However, in some cases, the gross tumor volume cannot be manually segmented since it is not visible.

  3. 3.

    The type of registration process used in[7] for adapting the model to the 3D images was not explicitly mentioned in that paper.

  4. 4.

    Every point is represented by a cross and tags enumerating it. However since for this mesh we have a lot of points the tags appear all superposed and make the visualization a little strange.

References

  1. BachCuadra, M., Gorthi, S., Karahanoglu, F.I., Salvador, F., Pica, A., Do, H., Balmer, A., Munier, F., Thiran, J.P.: Model-based segmentation and image fusion of 3D computed tomography and 3D ultrasound of the eye for radiotherapy planning. In: Second ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, pp. 53–58 (2009)

    Google Scholar 

  2. Bekes, G., Máté, E., Nyúl, L.G., Kuba, A., Fidrich, M.: Geometrical model-based segmentation of the organs of sight on CT images. Med. Phys. 35, 735–743 (2008)

    Article  Google Scholar 

  3. Bondiau, P.Y., Malandain, G.: Eye reconstruction and CT-retinography fusion for proton treatment planning of ocular diseases. In: CVRMed-MRCAS’97, LNCS, vol. 1205, pp. 705–714. Springer (1997)

    Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. Cates, J.E., Whitaker, R.T., Jones, G.M.: Case study: an evaluation of user-assisted hierarchical watershed segmentation. Med. Image Anal. 9(6), 566–578 (2005)

    Article  Google Scholar 

  6. DHaese, P., Duay, V., Li, R., duBoisdAische, A., Merchant, T., Cmelak, A., Donnelly, E., Niermann, K., Macq, B., Dawant, B.: Automatic segmentation of brain structures for radiation therapy planning. In: Medical Imaging: Image Processing, ISCAS. SPIE (2003)

    Google Scholar 

  7. Dobler, B., Bendl, R.: Precise modelling of the eye for proton therapy of intra-ocular tumours. Phys. Med. Biol. 47(4), 593–613 (2002)

    Article  Google Scholar 

  8. Donaldson, S., Smith, L.: Retinoblastoma: biology, presentation, and current management. Oncology 3(10), 45–51 (1989)

    Google Scholar 

  9. Fenster, A., Downey, D., Cardinal, H.: Three-dimensional ultrasound imaging. Phys. Med. Biol. 46(5), 67–99 (2001)

    Google Scholar 

  10. Maintz, J., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  11. Maleike, D., Nolden, M., Meinzer, H.P., Wolf, I.: Interactive segmentation framework of the medical imaging interaction toolkit. Comput. Meth. Programs Biomed. 96(1), 72–83 (2009)

    Article  Google Scholar 

  12. Munier, F., Verwey, J., Pica, A., Balmer, A., Zografos, L., Abouzeid, H., Timmerman, B., Goitein, G., Moeckli, R.: New developments in external beam radiotherapy for retinoblastoma: from lens to normal tissue-sparing techniques. Clin. Exp. Ophthalmol. 36(1), 78–89 (2008)

    Article  Google Scholar 

  13. OCular TumOur Planning UtilitieS (OCTOPUS). http://www.dkfz.de/en/medphys/therapy_planning_development/projects/octopu%s.html

  14. Ophthalmic Technologies Inc. (OTI), Canada. http://www.opko.com/

  15. Penney, G., Blackall, J., Hamady, M., Sabharwal, T., Adam, A., Hawkes, D.: Registration of freehand 3D ultrasound and magnetic resonance liver images. Med. Image Anal. 8, 81–91 (2004)

    Article  Google Scholar 

  16. Roche, A., Pennec, X.M.G.A.N.: Rigid registration of 3-D ultrasound with MR images: a new approach combining intensity and gradient information. IEEE Tran. Med. Imag. 20(10), 1038–1049 (2001)

    Google Scholar 

  17. Souza, A., Ruiz, E.: Fast and accurate detection of extraocular muscle borders using mathematical morphology. In: Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, vol.3, pp. 1779–1782 (2000)

    Google Scholar 

  18. Wein, W., Brunke, S., Khamene, A., Callstrom, M., Navab, N.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Med. Image Anal. 12, 577–585 (2008)

    Article  Google Scholar 

  19. Yannuzzi, L.A., Ober, M.D., Slakter, J.S., Spaide, R.F., Fisher, Y.L., Flower, R.W., Rosen, R.: Ophthalmic fundus imaging: today and beyond. Am. J. Ophthalmol. 137(3), 511–524 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Centre d ́Imagerie BioMédicale (CIBM) of the University of Lausanne (UNIL), the Swiss Federal Institute of Technology Lausanne (EPFL), the University of Geneva (UniGe), the Centre Hospitalier Universitaire Vaudois (CHUV), the Hôpitaux Universitaires de Genève (HUG) and the Leenaards and the Jeantet Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bach Cuadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cuadra, M.B. et al. (2011). Model-Based Segmentation and Fusion of 3D Computed Tomography and 3D Ultrasound of the Eye for Radiotherapy Planning. In: Tavares, J., Jorge, R. (eds) Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0011-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0011-6_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0010-9

  • Online ISBN: 978-94-007-0011-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics