Skip to main content

Nonlinear Acoustics for Non-invasive Assessment of Bone Micro-damage

  • Chapter
  • First Online:
Bone Quantitative Ultrasound

Abstract

This chapter presents the state of art in the field of nonlinear ultrasound applied to bone micro-damage assessment. An increasing number of groups have been conducting research in the past years on this particular topic, motivated by the particular sensitivity shown by nonlinear ultrasound methods in industrial materials and geomaterials. Some of the results obtained recently on bone damage assessment in vitrousing various nonlinear ultrasound techniques are presented. In particular, results obtained with higher harmonic generation, Dynamic Acousto-Elastic Testing (DAET), Nonlinear Resonant Ultrasound Spectroscopy (NRUS), and Nonlinear Wave Modulation Spectroscopy (NWMS) techniques are detailed. All those results show a very good potential for nonlinear ultrasound techniques for bone damage assessment. They should benefit from a proper quantification of the relationship between micro-damage and nonlinear ultrasound parameters. This could be obtained through a thorough statistical study which remains to be achieved. A practical implementation of an in vivosetup also remains to be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    M 0is the linear elastic modulus or the second-order (in energy) elastic constant, whereas M 1 M 2are the third-order and fourth-order elastic constants, respectively, which account for nonlinear elasticity. M 1and M 2are negative for most of the materials.

  2. 2.

    Practically, a burst containing at least ten acoustic periods is emitted to facilitate the extraction of the second harmonic amplitude in the frequency domain after the computation of the Fourier transform of the received acoustic signal.

  3. 3.

    In other words, the nonlinearity in the equation of state of the material, relating stress to strain.

  4. 4.

    In an isotropic solid, for a compressional plane wave, \(\beta = -(3/2 + {C}_{111}/(2{C}_{11}))\), where C 111and C 11are elastic constants homogeneous to M 1and M 0, respectively [7]. The value 3 ∕ 2 instead of 1 in the expression of β is related to the difference between Lagrangian and Eulerian descriptions of particle motion. Moreover the negative sign arises from the difference in the definitions of the pressure and the stress. Besides, the reader has to pay attention to the definition of β when comparing values obtained by different studies. Indeed the parameter of quadratic nonlinear elasticity is sometimes defined as \(\beta = -(3 + {C}_{111}/{C}_{11})\), twice the value usually employed in the “fluid” community.

  5. 5.

    The heel bone or calcaneus contains 95% of trabecular surrounded by a thin cortical shell.

  6. 6.

    In the DAET configuration, the convective effect cannot occur because the LF and US beams propagate in perpendicular directions. In this section, we redefine β as \(\beta = B/A\).

  7. 7.

    For most of materials, small relative variations of the density can be neglected compared to small relative variations of the elastic modulus.

  8. 8.

    http://www.biobank.fr/

  9. 9.

    The crack density is expressed in cracks number per square mm of bone tissue.

References

  1. V.E. Nazarov, L.E. Ostrovsky, I.A. Soustova, A. Sutin.: Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Inter. 50, 65–73 (1988)

    Google Scholar 

  2. R.A. Guyer and P.A. Johnson.: Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Phys. Today 52, 30–35 (1999)

    Google Scholar 

  3. E.F. Morgan, O.C. Yeh, and T.M. Keaveny.: Damage in trabecular bone at small strains. Eur. J. Morphol. 42(1–2), 13–21 (2005)

    Google Scholar 

  4. D. Vashishth.: Hierarchy of bone microdamage at multiple length scales. Int. J. Fatigue 29, 1024–1033 (2007)

    Google Scholar 

  5. P.H. Nicholson and M.L. Bouxsein.: Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J. Bone Miner. Res. 15(12), 2467–2472 (2000)

    Google Scholar 

  6. K.R. McCall and R.A. Guyer.: Equation of state and wave-propagation in hysteretic nonlinear elastic-materials. J. Geophys. Res. Solid Earth 99(B12), 23887–23897 (1994)

    Google Scholar 

  7. M.F. Hamilton and D.T. Blackstock.: Nonlinear Acoustics, Theory and Applications. Academic Press, New York (1998)

    Google Scholar 

  8. M.F. Hamilton and D.T. Blackstock.: On the coefficient of nonlinearity β in nonlinear acoustics. J. Acoust. Soc. Am. 83(1), 74–77 (1988)

    Google Scholar 

  9. R.T. Beyer.: Parameter of nonlinearity in fluids. J. Acoust. Soc. Am. 32(6), 719–721 (1960)

    Google Scholar 

  10. V.Y. Zaitsev, A. Dyskin, E. Pasternak, and L. Matveev.: Microstructure-induced giant elastic nonlinearity of threshold origin: Mechanism and experimental demonstration. Europhys. Lett. 86(4), 44005 (2009)

    Google Scholar 

  11. W.L. Morris, O. Buck, and R.V. Inman.: Acoustic harmonic generation due to fatigue damage in high-strength aluminium. J. Appl. Phys. 50(11), 6737–6741 (1979)

    Google Scholar 

  12. J.Y. Kim, L.J. Jacobs, J. Qu, and J.W. Littles.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120(3), 1266–1273 (2006)

    Google Scholar 

  13. J. Herrmann, J.Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, and M.F. Savage.: Assessment of material damage in a nickel-base superalloy using nonlinear rayleigh surface waves. J. Appl. Phys. 99(12), 124913, 1–8 (2006)

    Google Scholar 

  14. C.S. Kim, I.K. Park, and K.Y. Jhang.: Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel. NDT&E Int 42, 204–209 (2009)

    Google Scholar 

  15. S. Baby, B.N. Kowmudi, C.M. Omprakash, D.V.V. Satyanarayana, K. Balasubramaniam, and V. Kumar.: Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scripta Mater. 59(8), 818–821 (2008)

    Google Scholar 

  16. K.Y. Jhang.: Nonlinear ultrasonic techniques for nondestructive assessment of microdamage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)

    Google Scholar 

  17. L. Hoff, K.G. Oygarden, E.K. Hagen, and J.-A. Falch.: Diagnosis of osteoporosis using nonlinear ultrasound. Ultrasonics IEEE Symp. 1, 1010–1013 (2003)

    Google Scholar 

  18. H.E. Engan, K.A. Ingebrigtsen, K.G. Oygarden, E.K. Hagen, and L. Hoff.: Nonlinear ultrasound detection of osteoporosis. Ultrasonics IEEE Symposium, Vancouver 2096–2099 (2006)

    Google Scholar 

  19. T.L. Norman, T.M. Little, and Y.N. Yeni.: Age-related changes in porosity and mineralization and in-service damage accumulation. J. Biomech. 41(13), 2868–2873 (2008)

    Google Scholar 

  20. M.E. Arlot, B. Burt-Pichat, J.P. Roux, D. Vashishth, M.L. Bouxsein, and P.D. Delmas.: Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J. Bone Miner. Res. 23(10), 1613–1618 (2008)

    Google Scholar 

  21. L. Ostrovsky and P. Johnson.: Dynamic nonlinear elasticity in geomaterials. Rivista del Nuovo Cimento. 24, 1–46 (2001)

    Google Scholar 

  22. G. Renaud, S. Callé, J.-P. Remenieras, and M. Defontaine.: Non-linear acoustic measurements to assess crack density in trabecular bone. Int. J. Nonlinear Mech. 43(3), 194–200 (2008)

    Google Scholar 

  23. P.W. Bridgman.: Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47, 441–558 (1912)

    Google Scholar 

  24. J.C. Swanson.: Pressure coefficients of acoustic velocity for nine organic liquids. J. Chem. Phys. 2, 689–693 (1934)

    Google Scholar 

  25. F. Birch.: The effect of pressure on the modulus of rigidity of several metals and glasses. J. Appl. Phys. 8, 129–133 (1937)

    Google Scholar 

  26. J.M. Ide.: The velocity of sound in rocks and glasses as a function of temperature. J. Geol. 45, 689–716 (1937)

    Google Scholar 

  27. M.A. Biot.: The influence of initial stress on elastic waves. J. Appl. Phys. 11, 522–530 (1940)

    Google Scholar 

  28. R.A. Toupin and B. Bernstein.: Sound waves in deformed perfectly elastic materials. acoustoelastic effect. J. Acoust. Soc. Am. 33(2), 216–225 (1961)

    Google Scholar 

  29. J.R. Pellam and J.K. Galt.: Ultrasonic propagation in liquids: I. Application of pulse technique to velocity and absorption measurements at 15 megacycles. J. Chem. Phys. 14(10), 608–614 (1946)

    Google Scholar 

  30. D. Lazarus.: The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. Phys. Rev. 76, 545–553 (1949)

    Google Scholar 

  31. G. Holton.: Ultrasonic propagation in liquids under high pressures: Velocity measurements on water. J. Appl. Phys. 22(12), 1407–1413 (1951)

    Google Scholar 

  32. D.S. Hughes and J.L. Kelly.: Second-order elastic deformation of solids. Phys. Rev. 92(5), 1145–1149 (1953)

    Google Scholar 

  33. G.A. Gist.: Fluid effects on velocity and attenuation in sandstones. J. Acoust. Soc. Am. 96, 1158–1173 (1994)

    Google Scholar 

  34. T. Bourbié, O. Coussy, and B. Zinszner.: Acoustics of porous media. Institut Français du Pétrole publications, Ed TechniP, Paris (1987)

    Google Scholar 

  35. K.W. Winkler and W.F. Murphy.: Acoustic velocity and attenuation in porous rocks. In T.J. Ahrens (ed.) Rock Physics and Phase relations, A Handbook of Physical Constants, American Geophysical Union, Washington, DC, 20–34 (1995)

    Google Scholar 

  36. N. Ichida, T. Sato, and M. Linzer.: Imaging the nonlinear parameter of the medium. Ultrason. Imaging 5, 295–299 (1983)

    Google Scholar 

  37. G. Gremaud, M. Bujard, and W. Benoit.: The coupling technique: A two-wave acoustic method for the study of dislocation dynamics. J. Appl. Phys. 61(5), 1795–1805 (1987)

    Google Scholar 

  38. G. Renaud, S. Callé, J.-P. Remenieras, and M. Defontaine.: Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation. IEEE Trans. UFFC 55(7), 1497–1507 (2008)

    Google Scholar 

  39. G. Renaud, S. Callé, and M. Defontaine.: Remote dynamic acoustoelastic testing: Elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94(1), 011905 (2009)

    Google Scholar 

  40. M. Rupprecht, P. Pogoda, M. Mumme, J.M. Rueger, K. Pschel, and M. Amling.: Bone microarchitecture of the calcaneus and its changes in aging: A histomorphometric analysis of 60 human specimens. J. Orthop. Res. 24(4), 664–674 (2006)

    Google Scholar 

  41. D. Donskoy and A. Sutin.: Nonlinear acoustic parameter of trabecular bone. J. Acoust. Soc. Am. 102(5), 3155 (1997)

    Google Scholar 

  42. R.A. Guyer and P.A. Johnson.: Nonlinear Mesoscopic Elasticity. Wiley, New York (2009)

    Google Scholar 

  43. N.L. Fazzalari, J.S. Kuliwaba, and M.R. Forwood.: Cancellous bone microdamage in the proximal femur: Influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31(6), 697–702 (2002)

    Google Scholar 

  44. H. Moreschi, S. Callé, S. Guerard, D. Mitton, G. Renaud, and M. Defontaine.: Monitoring of trabecular bone induced microdamage using a nonlinear wave-coupling technique. In Proceedings of the IEEE-UFFC Ultrasonics Symposium, Rome (2009)

    Google Scholar 

  45. T.C. Lee, S. Mohsin, D. Taylor, R. Parkesh, T. Gunnlaugsson, F.J. O’Brien, M. Giehl, and W. Gowin.: Detecting microdamage in bone. J. Anat. 203, 161–172 (2003)

    Google Scholar 

  46. T.L.A. Moore and L.J. Gibson.: Fatigue microdamage in bovine trabecular bone. J. Biomech. Eng. 125, 769–776 (2003)

    Google Scholar 

  47. H. Moreschi, S. Callé, S. Guérard, D. Mitton, G. Renaud, and M. Defontaine.: Monitoring trabecular bone microdamage using Dynamic AcoustoElastic Testing method. Proc. IMechE vol. 225, Part H: J. Eng. Med. (2010)

    Google Scholar 

  48. K. Hadley.: Comparison of calculated and observed crack densities and seismic velocities in westerly granite. J. Geophys. Res. 81(20), 3484–3494 (1976)

    Google Scholar 

  49. S. Peacock, C. McCann, J. Sothcott, and T.R. Astin.: Seismic velocities in fractured rocks: An experimental verification of Hudson’s theory. Geophys. Prospect. 42(1), 27–80 (1994)

    Google Scholar 

  50. K. Van Den Abeele, P.Y. Le Bas, B. Van Damme, and T. Katkowski.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J. Acoust. Soc. Am. 126(3), 963–972 (2009)

    Google Scholar 

  51. W.M. Visscher, A. Migliori, T.M. Bell, and R.A. Reinert.: On the normal-modes of free-vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am. 90(4), 2154–2162 (1991)

    Google Scholar 

  52. K. Van Den Abeele, J. Carmeliet, J.A. Tencate, P.A. Johnson.: Nonlinear wave modulation spectroscopy (NWMS) techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 12, 31–42 (2000)

    Google Scholar 

  53. R.A. Guyer, K.R. McCall, G.N. Boitnott, L.B. Hilbert, and T.J. Plona.: Quantitative use of Preisach-Mayergoyz space to find static and dynamic elastic moduli in rock. J. Geophys. Res. 102, 8105–8120 (1997)

    Google Scholar 

  54. P.A. Johnson, B. Zinszner, P. Rasolofosaon, F. Cohen-Tenoudji, and K.V.D. Abeele.: Dynamic measurements of the nonlinear elastic parameter in rock under varying conditions. J. Geophys. Res. 109, B02202 (2004)

    Google Scholar 

  55. M. Muller, A. Sutin, R.A. Guyer, M. Talmant, P. Laugier, and P.A. Johnson.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118, 3946–3952 (2005)

    Google Scholar 

  56. M. Muller, A. D’Hanens, D. Mitton, M. Talmant, P. Laugier, and P.A. Johnson.: Nonlinear ultrasound can detect accumulated damage in human bone. J. Biomech. 41(5), 1062–1068 (2008)

    Google Scholar 

  57. P.A. Johnson, B. Zinszner, and P.N.J. Rasolofosaon.: Resonance and nonlinear elastic phenomena in rock. J. Geophys. Res. 101(B5), 11553–11564 (1996)

    Google Scholar 

  58. W.E. Caler and D.R. Carter.: Bone creep-fatigue damage accumulation. J. Biomech. 22, 625–635 (1989)

    Google Scholar 

  59. D.R. Carter, W.E. Caler, D.M. Spengler, and V.H. Frankel.: Fatigue behaviour of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52, 481–490 (1981)

    Google Scholar 

  60. M.B. Schaffler, K. Choi, and C. Milgrom.: Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521–525 (1995)

    Google Scholar 

  61. K. Van Den Abeele, J. Carmeliet, J.A. Tencate, and P.A. Johnson.: Nonlinear wave modulation spectroscopy (NWMS) techniques to discern material damage, Part I: Nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12, 17–30 (2000)

    Google Scholar 

  62. V. Zaitsev, V. Nazarov, V. Gusev, and B. Castagnede.: Novel nonlinear-modulation acoustic technique for crack detection. NDT&E Int. 30, 184–194 (2006)

    Google Scholar 

  63. V.V. Kazakov, A. Sutin, P.A. Johnson.: Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl. Phys. Lett. 81(4), 646–648 (2002)

    Google Scholar 

  64. T.J. Ulrich, P.A. Johnson, M. Muller, D. Mitton, M. Talmant, P. Laugier.: Application of nonlinear dynamics to monitoring progressive fatigue damage in human bone. Appl. Phys. Lett. 91, 213901 (2007)

    Google Scholar 

  65. K. Zacharias, E. Balabanidou, I. Hatzokos, I.T. Rekanos, and A. Trochidis.: Microdamage evaluation in trabecular bone based on nonlinear ultrasound vibro-modulation (NUVM). J. Biomech. 42, 581–586 (2009)

    Google Scholar 

  66. V.E. Gusev, V. Tournat.: Amplitude- and frequency-dependent nonlinearities in the presence of thermally induced transitions in the Preisach model of acoustic hysteresis. Phys. Rev. B 72, 054104 (2005)

    Google Scholar 

  67. R.A. Guyer, K.R. McCall, G.N. Boitnott.: Hysteresis, discrete memory, and nonlinear-wave propagation in rock – A new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)

    Google Scholar 

  68. F. Preisach.: Uber die magnetische Nachwirkung. Z. Phys. 94, 277–302 (1935)

    Google Scholar 

  69. I.D. Mayergoyz.: Hysteresis models from the mathematical and control theory points of view. J. Appl. Phys. 57, 3803–3805 (1985)

    Google Scholar 

  70. M. Scalerandi, P.P. Delsanto, V. Agostini, K. Van Den Abeele, P. A. Johnson.: Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. J. Acoust. Soc. Am. 113, 3049–3059 (2003)

    Google Scholar 

  71. K. Van Den Abeele, F. Schubert, V. Aleshin, F. Windels, and J. Carmeliet.: Resonant bar simulations in media with localized damage. Ultrasonics 42, 1017–1024 (2004)

    Google Scholar 

  72. P. Fellinger, R. Marklein, K.J. Langenberg, and S. Klaholz.: Numerical modeling of elastic-wave propagation and scattering with EFIT – Elastodynamic finite integration technique. Wave Motion 21, 47–66 (1995)

    Google Scholar 

  73. L.D. Landau, and E.M. Lifshitz, Theory of Elasticity, 3rd edn. Pergamon, New York (1986)

    Google Scholar 

  74. V. Tournat, V.E. Gusev, V.Y. Zaitsev, V.E. Nazarov, and B. Castagnède.: Probing granular media via nonlinear acoustic effects. Reviex Progress in QNDE. 24, 369–376 (2005)

    Google Scholar 

  75. I.Y. Belyaeva, L.A. Ostrovsky, V.Y. Zaitsev.: Microstructure indiced nonlinearity of unconsolidated rocks as related to seismic diagnostics problems. Nonlinear Process. Geophys. 4, 4–10 (1997)

    Google Scholar 

  76. R.B. Gordon and L.A. Davis.: Velocity and attenuation of seismic waves in imperfectly elastic rock. J. Geophys. Res. 73, 3917–3935 (1968)

    Google Scholar 

  77. T.C. Lee, E.R. Myers, and W.C. Hayes.: Fluorescence aided detection of microdamage in compact bone. J. Anat. 193(2), 179–184 (1998)

    Google Scholar 

  78. E.F. Morgan, O.C. Yeh, W.C. Chang, and T.M. Keaveny.: Nonlinear behavior of trabecular bone at small strains. J. Biomech. Eng. 123, 1–9 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Muller, M., Renaud, G. (2011). Nonlinear Acoustics for Non-invasive Assessment of Bone Micro-damage. In: Laugier, P., Haïat, G. (eds) Bone Quantitative Ultrasound. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0017-8_15

Download citation

Publish with us

Policies and ethics