Skip to main content

The Potential for Temperature Acclimatisation of Reef Corals in the Face of Climate Change

  • Chapter
  • First Online:
Coral Reefs: An Ecosystem in Transition

Abstract

Coral bleaching has taken centre-stage in the debate over the likely biological effects of global environmental change. Central to any judgements on this issue is the ability of corals to display increased tolerance of debilitating or lethal conditions through phenotypic adaptations, such as heat-hardening, longer-term acclimatisation responses or even trans-generational epigenetic effects. But the key question is whether the magnitude of such responses can match the predicted increases in sea temperatures over the period of global warming. In the recent literature, much has been said about the potential for acclimatisation in tropical reef corals and how it may, or may not, be significant in the context of the world’s changing climate (Hughes et al. 2003; Hoegh-Guldberg 2004; Donner et al. 2007; Hoegh-Guldberg et al. 2007; Maynard et al. 2008a; Donner 2009). In fact, we know remarkably little about the potential for and extent of acclimatisation in corals, and the complex physiology and behaviour underlying the phenomenon (Edmunds and Gates 2008; Maynard et al. 2008a). It is important at this stage to define the terms used in this chapter following Bligh and Johnson (1973) since there has been, and continues to be, considerable confusion in their use in the literature together with established concepts in thermal biology (see Box 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol 364:63–67

    Article  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003) Kinetics of photoacclimation in corals. Oecologia 134:23–31

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral builders. Proc Natl Acad Sci 105:17442–17446

    Article  CAS  Google Scholar 

  • Baird AH, Bhagooli R, Ralph P, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 1:16–20

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Bay LK, Ulstrup KE, Bjørn Nielsen H, Jarmer H, Goffard N, Willis BL, Miller DJ, Van Oppen MJH (2009) Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol Ecol 18:3062–3075

    Article  CAS  Google Scholar 

  • Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Prog Ser 237:309–310

    Google Scholar 

  • Berkelmans R (2009) Bleaching and mortality thresholds: how much is too much? In: van Oppen MJH, Lough JM (eds) Coral bleaching. Springer, Heidelberg, pp 103–119

    Chapter  Google Scholar 

  • Berkelmans R, Willis BL (1999) Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore central Great Barrier Reef. Coral Reefs 18:219–228

    Article  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B 272:29–38

    Google Scholar 

  • Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns and predictions. Coral Reefs 23:74–83

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol A 137:547–555

    Article  CAS  Google Scholar 

  • Bligh J, Johnson KG (1973) Glossary of terms for thermal physiology. J Appl Physiol 35:941–961

    CAS  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    Google Scholar 

  • British National History Museum Archives (1928) Sir Maurice Yonge collection: expedition progress reports DF214/7 for Aug 17th-November 14th 1928

    Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16(Suppl):S129–S138

    Article  Google Scholar 

  • Brown BE, Dunne RP (2008) Solar radiation modulates bleaching and damage protection in a shallow water coral. Mar Ecol Prog Ser 362:99–107

    Article  Google Scholar 

  • Brown BE, Dunne RP, Chansang H (1996) Coral bleaching relative to elevated seawater temperature in the Andaman Sea (Indian Ocean) over the last 50 years. Coral Reefs 15:151–152

    Google Scholar 

  • Brown BE, Dunne RP, Ambarsari I, Le Tissier MDA, Satapoomin U (1999) Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar Ecol Prog Ser 191:53–69

    Article  Google Scholar 

  • Brown BE, Dunne RP, Warner ME, Ambarsari I, Fitt WK, Gibb SW, Cummings DG (2000) Damage and recovery of Photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar Ecol Prog Ser 195:117–124

    Article  Google Scholar 

  • Brown BE, Dunne RP, Goodson MS, Douglas AE (2002a) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126

    Google Scholar 

  • Brown BE, Downs CA, Dunne RP, Gibb SW (2002b) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129

    Article  Google Scholar 

  • Calosi P, Bilton DT, Spicer JL, Atfield A (2008) Thermal tolerance and geographical range size in the Agabus brunneus group of European diving beetles. J Biogeogr 35:295–305

    Google Scholar 

  • Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270

    Article  Google Scholar 

  • Compton TJ, Rijkenberg MJA, Drent J, Piersma T (2007) Thermal tolerance ranges and climate variability: a comparison between bivalves from differing climates. J Exp Mar Biol Ecol 352:200–211

    Article  Google Scholar 

  • Coles SL (1997) Reef corals occurring in a highly fluctuating temperature environment at Fahal Island, Gulf of Oman (Indian Ocean). Coral Reefs 16:269–272

    Article  Google Scholar 

  • Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166

    Google Scholar 

  • Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195

    Article  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching – capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  CAS  Google Scholar 

  • Cossins AR, Bowler K (1976) Resistance adaptation of the freshwater crayfish and thermal inactivation of membrane-bound enzymes.J Comp Physiol B 111:15–24

    Article  CAS  Google Scholar 

  • Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman and Hall, London

    Google Scholar 

  • Desalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971

    Article  CAS  Google Scholar 

  • Díaz F, Sierraa E, Reb AD, Rodríguez L (2002) Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman). J Thermal Biol 27:423–428

    Article  Google Scholar 

  • D’Croz L, Mate JL (2004) Experimental responses to elevated water temperature in genotypes of the reef coral Pocillopora damicornis from upwelling and non-upwelling environments in Panama. Coral Reefs 23:473–483

    Article  Google Scholar 

  • Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biol 11:2251–2265

    Article  Google Scholar 

  • Donner SD, Knutson TR, Oppenheimer M (2007) Model-based assessment of the role of human-induced climate change in the 2005 Caribbean bleaching event. Proc Natl Acad Sci 104:5483–5488

    Google Scholar 

  • Donner SD (2009) Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS ONE 4:1–10

    Article  CAS  Google Scholar 

  • Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116

    Article  Google Scholar 

  • Dove S, Ortiz JC, Enríquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158

    Article  Google Scholar 

  • Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000)A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar Biotechnol 2:533–544

    Article  CAS  Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  Google Scholar 

  • Dunne RP, Brown BE (2001) The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993-1998. Coral Reefs 20:201–210

    Google Scholar 

  • Eakin CM, Lough JM, Heron SF (2009) Climate variability and change: monitoring data and evidence for increased coral bleaching stress. In: van Oppen MJH, Lough JM (eds) Coral bleaching. Springer, Heidelberg, pp 41–67

    Chapter  Google Scholar 

  • Edge SE, Morgan MB, Gleason DF, Snell TW (2005) Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress. Mar Pollut Bull 51:507–523

    Article  CAS  Google Scholar 

  • Edmondson CH (1928) The ecology of an Hawaiian coral reef. Bull Bernice P Bishop Mus 45:1–64

    Google Scholar 

  • Edmunds PJ, Gates RD (2008) Acclimatization in tropical reef corals. Mar Ecol Prog Ser 361:307–310

    Article  Google Scholar 

  • El-Wadawi R, Bowler K (1995) The development of thermotolerance protects blowfly flight muscle mitochondrial function from heat damage. J Exp Biol 11:2413–2421

    Google Scholar 

  • Eme J, Bennett WA (2009) Critical thermal tolerance polygons of tropical marine fishes from Sulawesi. Indones J Thermal Biol 3:220–225

    Article  Google Scholar 

  • Fagoonee I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: a long-term study in the field. Science 283:843–845

    Article  CAS  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Forêt S, Kassahn KS, Grasso LC, Hayward DC, Iguchi A, Ball EE, Miller DJ (2007) Genomic and microarray approaches to coral reef conservation biology. Coral Reefs 26:475–486

    Article  Google Scholar 

  • Glynn PW (1993) Coral-reef bleaching – ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Griffin SP, Bhagooli R, Weil E (2006) Evaluation of thermal acclimation capacity in corals with different thermal histories based on catalase concentrations and antioxidant potentials. Comp Biochem Physiol C 144:155–162

    Article  CAS  Google Scholar 

  • Gladwell RT (1975) Heat death in the crayfish Austropotamobius pallipes: thermal inactivation of muscle-bound ATPase in warm and cold adapted animals. J Thermal Biol 1:95–100

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  Google Scholar 

  • Hellberg ME (1998) Sympatric sea shells along the sea’s shore: the geography of speciation in the marine gastropod Tegula. Evolution 52:1311–1324

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwat Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–32

    Google Scholar 

  • Hoegh-Guldberg O (2009) Climate change and coral reefs: Trojan horse or false prophecy? Coral Reefs 28:569

    Google Scholar 

  • Hoegh-Guldberg O, Fine M (2005) Coral bleaching follows wintry weather. Limnol Oceanogr 50:256–271

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Hoyland J, Cossins AR, Hill MW (1979) Thermal limits for behavioural function and resistance-adaptation of goldfish, Carassius auratusL. J Comp Physiol 129:241–246

    Article  Google Scholar 

  • Hoffman GE, Somero GN (1995) Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus.J Exp Biol 198:1509–1518

    Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Pérez HJA, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B 276:1939–1948

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom N, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162

    Article  Google Scholar 

  • Jokiel PL, Brown EK (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Global Change Biol 10:1627–1641

    Article  Google Scholar 

  • Kenny R (1974) Inshore surface sea temperatures at Townsville. Mar Freshwat Res 25:1–5

    Article  Google Scholar 

  • Kleypas J, Danabasoglu G, Lough JM (2008) Potential role of the ocean thermostat in determining regional differences in coral bleaching events. Geophys Res Lett 35:L03613

    Article  Google Scholar 

  • Kronforst MR, Gilley D, Strassmann J, Queller D (2008) DNA methylation is widespread across social Hymenoptera. Curr Biol 18:R287–R288

    Article  CAS  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  • Mayer AG (1914) The effects of temperature on tropical marine animals. Carnegie Inst Washington Publ Dept Mar Biol Pap Tortugas Lab 183:1–24

    Google Scholar 

  • Maynard JA, Baird AH, Pratchett MS (2008a) Revisiting the Cassandra syndrome; the changing climate of coral reef research. Coral Reefs 27:745–749

    Article  Google Scholar 

  • Maynard J, Anthony K, Marshall P, Masiri I (2008b) Major bleaching events can lead to increased thermal tolerance in corals. Mar Biol 155:173–182

    Article  Google Scholar 

  • McClanahan TR, Maina J (2004) Response of coral assemblages to the interaction between natural temperature variation and rare warm-water events in Kenyan reef lagoons. Ecosystems 6:551–563

    Article  Google Scholar 

  • McClanahan TR, Ateweberhan M, Muhando C, Maina J, Mohammed MS (2007) Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr 77:503–525

    Article  Google Scholar 

  • Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056

    Article  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219

    Article  CAS  Google Scholar 

  • Nomura K (2004) The Ki Peninsula. In: Japanese Coral Reef Society and Ministry of Environment (eds) Coral reefs of Japan Ministry of the Environment, Tokyo, pp 252–256

    Google Scholar 

  • Obura DO (2005) Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean. Estuarine Coast Shelf Sci 63:353–372

    Article  Google Scholar 

  • Oliver JK, Berkelmans R, Eakin CM (2009) Coral bleaching in space and time. In: van Oppen MJH, Lough JM (eds) Coral bleaching. Springer, Heidelberg, pp 21–39

    Chapter  Google Scholar 

  • Pal C, Hurst LD (2004) Epigenetic inheritance and evolutionary adaptation. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phylogeny. CDC Press, Boca Raton, pp 347–364

    Google Scholar 

  • Pettay DT, LaJeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol Ecol Res 9:1022–1025

    Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209:2362–2367

    Article  Google Scholar 

  • Precht H, Christopherson J, Hensel H, Larcher W (1973) Temperature and life. Springer, Berlin

    Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2009) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  Google Scholar 

  • Richier S, Rodriguez-Lanetty M, Schnitzler CE, Weis VM (2008) Response of the symbiotic cnidarian Anthopleura elegantissima transcriptome to temperature and UV increase. Comp Biochem Physiol D 3:283–289

    Google Scholar 

  • Reynaud S, Leclerq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668

    Google Scholar 

  • Roberts DA, Hoffman GE, Somero GN (1997) Heat shock protein expression in Mytilus californianus: acclimatization (seasonal and tidal-height comparisons) and acclimation effects. Biol Bull 192:309–320

    Article  CAS  Google Scholar 

  • Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  Google Scholar 

  • Salih A, Larkum A, Cox G, Kuhl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology; principals and adaptations. Cambridge University Press, New York

    Google Scholar 

  • Sharp V, Brown BE, Miller D (1997) Heat shock protein (HSP 70) expression in the tropical reef coral Goniopora djiboutuensis.J Therm Biol 22:11–19

    Article  CAS  Google Scholar 

  • Sheppard C (2009) Large temperature plunges recorded by data loggers at different depths on an Indian Ocean atoll: comparison with satellite data and relevance to coral refuges. Coral Reefs 28:399–403

    Article  Google Scholar 

  • Sheppard C, Price A, Roberts C (2002) Marine ecology of the Arabian Region. Academic Press, London

    Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2:1. doi:10.1186/1742-9994-2-1

    Article  Google Scholar 

  • Stillman JH (2002) Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, Genus Petrolisthes. Int Comp Biol 42:790–796

    Article  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    Article  CAS  Google Scholar 

  • Stimson J (1997) The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis. J Exp Mar Biol Ecol 214:35–48

    Article  Google Scholar 

  • Suwa R, Hirose M, Hidaka M (2008) Seasonal fluctuation in zooxanthellar genotype composition and photophysiology in the corals Pavona divaricata and P. decussata. Mar Ecol Prog Ser 361:129–137

    Article  CAS  Google Scholar 

  • Suzuki MM, Bird A (2007) DNA methylation landscapes: provocative insights from epigenomics. Nature 447:396–398

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, De Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci 101:13531–13535

    Article  CAS  Google Scholar 

  • Terblanche JS, Deere JA, Clusella-Trullas S, Janion C, Chown SL (2007) Critical thermal limits depend on methodological context. Proc R Soc B 274:2935–2943

    Article  Google Scholar 

  • Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical Animals. Science 320:1296–1297

    Article  CAS  Google Scholar 

  • Tomascik T, Mah AJ, Nontji A, Moosa MK (1997) The Ecology of the Indonesian Seas. Part Two. Periplus Editions (HK) Ltd, Hong Kong

    Google Scholar 

  • Visram S, Douglas AE (2007) Resilience and acclimation to bleaching stressors in the scleractinian coral Porites cylindrica. J Exp Mar Biol Ecol 349:35–44

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Willmer P, Stone G, Johnstone IA (2004) Environmental physiology of animals. Wiley-Blackwell, London

    Google Scholar 

  • Xu M, Li X, Korban SS (2000) AFLP-Based detection of DNA methylation. Plant Mol Biol 18:361–368

    Article  CAS  Google Scholar 

  • Yakovleva I, Hidaka M (2004) Different effects of high temperature acclimation on bleaching-susceptible and tolerant corals. Symbiosis 37:87–105

    Google Scholar 

  • Yamamoto F, Yamamoto M (2004) A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses. Mol Genet Genomics 271:678–686

    Article  CAS  Google Scholar 

  • Yonge CM (1940) The biology of reef building corals. Sci Rep Great Barrier Reef Exped 1928–1929 1:353–391

    Google Scholar 

  • Yonge CM, Nicholls AG (1931) Studies of the physiology of corals. IV. The structure, distribution, and physiology of the zooxanthellae. Sci Rep Great Barrier Reef Exped 1928–1929 IV:135–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara E. Brown or Andrew R. Cossins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brown, B.E., Cossins, A.R. (2011). The Potential for Temperature Acclimatisation of Reef Corals in the Face of Climate Change. In: Dubinsky, Z., Stambler, N. (eds) Coral Reefs: An Ecosystem in Transition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_24

Download citation

Publish with us

Policies and ethics