Skip to main content

Abstract

Sustainable land use is the management of the natural environment and the built environment to conserve the resources that help to sustain the current local human population and that of future generations. This review serves three purposes. First, it gives an introduction to the concept of sustainability in relation to land use, assessing what is “unsustainable” and what is “sustainable.” The environmental, historical, and social context is described for understanding current land-use practices. But this will not suppress the demand for viable developmental processes and the potential collateral effects in order to avoid resource depletion. Where natural resources exist, exploitation needs to be adjusted to carrying capacity – that is, it must be determined to what degree the environment is capable of absorbing the impact of the development. As agricultural soil is the foundation for nearly all land uses, soil quality stands as a key indicator of sustainable land use. Second, land use and its mismanagement of arable areas by farmers and grazing areas by livestock is addressed as one of the major causes of soil degradation. This result from erosion, decline in fertility, changes in aeration and soil-water content, salinization, or a change in soil flora or fauna. By reflecting the basic functioning capacity of the soil, it is the measure of many potential uses. On the other hand, management policy will have to adapt agriculture to climate change by encouraging flexibility in land use, crop production, and farming systems. In doing so, it is necessary to consider the multifunctional role of agriculture and to strike a versatile balance between economic, environmental, and social functions in different regions and sectors. Also, attention needs to be paid to all issues concerning agricultural strategies in order to mitigate climate change through a reduction in emissions of greenhouse gases, by increasing carbon sequestration in agricultural soils and mediating the growth of energy crops as substitutes for fossil fuels. Third, it concludes that sustainable land use in agricultural systems involves readjusting unsuitable land use and promoting the appropriate use of land for sustainable systems. This review discusses some of the fundamental tasks and examines why sustainable land-use practices and innovations need to be adopted, providing a perspective of close ­collaboration among scientists, land managers, and policymakers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Agustin M, Perez BP, Mactas F (2004) Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biol Biochem 36:917–925

    Article  CAS  Google Scholar 

  • Allen TFH, Hoekstra TW (1992) Towards a unified ecology. Columbia University Press, New York

    Google Scholar 

  • Andrén O, Balandreau J (1999) Biodiversity and soil functioning – from black box to can of worms? Appl Soil Ecol 13:105–108

    Article  Google Scholar 

  • Andrén O, Brussaard L, Clarholm M (1999) Soil organism influence on ecosystem-level processes – bypassing the ecological hierarchy? Appl Soil Ecol 11:177–188

    Article  Google Scholar 

  • Andrews SS, Carroll CR (2001) Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol Appl 11:1573–1585

    Article  Google Scholar 

  • Andrews SS, Karlen DL, Mitchell JP (2002a) A comparison of soil quality indexing methods for vegetable production systems in northern California. Agric Ecosyst Environ 90:2–45

    Google Scholar 

  • Andrews SS, Mitchell JP, Mancineelli R, Karlen DL, Hartz TK, Horwath WR, Pettygrove GS, Scow KM, Munk DS (2002b) On-farm assessment of soil quality in California’s central valley. Agron J 94:12–23

    Article  Google Scholar 

  • Angus A, Burgess PJ, Morris J, Lingard J (2009) Agriculture and land use: demand for and supply of agricultural commodities, characteristics of the farming and food industries, and implications for land use in the UK. Land Use Policy 26:230–242

    Article  Google Scholar 

  • Antrop M (1997) The concept of traditional landscapes as a base for landscape evaluation and planning. The example of Flanders Region. Landscape Urban Plan 38:105–117

    Article  Google Scholar 

  • Antrop M (2006) Sustainable landscapes: contradiction, fiction or utopia? Landscape Urban Plan 75:187–197

    Article  Google Scholar 

  • Ares J (2004) Estimating pesticide environmental risk scores with land use data and fugacity equilibrium models in Misiones, Argentina. Agric Ecosyst Environ 103:45–58

    Article  CAS  Google Scholar 

  • Arias EM, López PE, Martínez CE, Simal GJ, Mejuto JC, García RL (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  CAS  Google Scholar 

  • Arnell NW (1999) Climate change and global water resources. Global Environ Chang 9:S31–S49

    Article  Google Scholar 

  • Arshad MA, Coen GM (1992) Characterization of soil quality: physical and chemical criteria. Am J Alternative Agric 7:25–31

    Article  Google Scholar 

  • Arshad MA, Gill KS, Coy GR (1994) Wheat yield and weed population as influenced by three tillage systems on a clay soil in temperate continental climate. Soil Till Res 28:227–238

    Article  Google Scholar 

  • Baker E (2005) Uncertainty and learning in a strategic environment: global climate change. Resour Energy Econ 27:19–40

    Article  Google Scholar 

  • Banko G, Zethner G, Wrbka T, Schmitzberger I (2003) Landscape types as the optimal domain for developing landscape indicators. In: Dramstad W, Sogge C (eds) Agricultural impacts on landscapes: developing Indicators for policy analysis. Proceedings from NIJOS/OECD Expert Meeting on Agricultural Landscape Indicators, Norwegian Institute of Land Inventory, pp 317–328

    Google Scholar 

  • Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Barrett GW (1992) Landscape ecology: designing sustainable agricultural landscapes. J Sustain Agric 2:83–103

    Article  Google Scholar 

  • Bartholy J, Pongracz R (2005) Extremes of ground-based and satellite measurements in the vegetation period for the Carpathian Basin. Phys Chem Earth 30:81–89

    Google Scholar 

  • Bationo A, Buerket A (2001) Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutr Cycl Agroecosyst 61:131–142

    Article  Google Scholar 

  • Bauhus J, Khanna PK, Hopmans P, Weston C (2002) Is soil carbon a useful indicator of sustainable forest soil management?—case study from native eucalypt forests of south-eastern Australia. Forest Ecol Manag 171:59–74

    Article  Google Scholar 

  • Bedrna Z (1989) Land productivity evaluation. Ecology 4:369–373

    Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  CAS  PubMed  Google Scholar 

  • Berenzen N, Lentzen GA, Probst M, Holger S, Ralf S, Matthias L (2005) A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere 58:683–691

    Article  CAS  PubMed  Google Scholar 

  • Bharat R, Sharma PS, Minhas A (2005) Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agric Water Manage 78:136–151

    Article  Google Scholar 

  • Bicík I, Jelecek L, Stepanek V (2001) Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy 18:65–73

    Article  Google Scholar 

  • Bignal EM (1999) Agenda 2000: the common agricultural policy reform proposals, British Wildlife, 172–176

    Google Scholar 

  • Bignal EM, McCracken DI (1996) Low-intensity farming systems in the conservation of the countryside. J Appl Ecol 33:413–424

    Article  Google Scholar 

  • Bignal EM, McCracken DI (2000) The nature conservation value of European traditional farming systems. Environ Rev 8:149–171

    Article  CAS  Google Scholar 

  • Blanco G, Tella JL, Torre I (1998) Traditional farming and key foraging habitats for chough Pyrrhocorax pyrrhocorax conservation in a Spanish pseudosteppe landscape. J Appl Ecol 35:232–239

    Article  Google Scholar 

  • Bolinder MA, Andrén O, Kätterer T, De Jong R, VandenBygaart DA (2007) Soil carbon dynamics in Canadian agricultural ecoregions: quantifying climatic influence on soil biological activity. Agric Ecosyst Environ 122:461–470

    Article  CAS  Google Scholar 

  • Bonny S (2006) Organic farming in Europe: situation and prospects. Notre Europe, Penser lúnite européenne. www.notre-europe.eu/fileadmin/IMG/pdf/Bonny_Agribio-EN.pdf

  • Borstlap S, Entz MH (1994) Zero-tillage influence on canola, field pea and wheat in a dry subhumid region: Agronomic and physiological responses. Can J Plant Sci 74:411–420

    Google Scholar 

  • Bossel H (1999) Indicators for sustainable development: theory, method, applications. A report to the Balaton Group. International Institute for Sustainable Development IISD, Winnipeg

    Google Scholar 

  • Bossio D, Geheb K, Critchley W (2010) Managing water by managing land: addressing land degradation to improve water productivity and rural livelihoods. Agric Water Manage 97:536–542

    Article  Google Scholar 

  • Botequillha LA, Ahern J (2002) Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape Urban Plan 59:65–93

    Article  Google Scholar 

  • Bouma J (2002) Land quality indicators of sustainable land management across scales. Agric Ecosyst Environ 88:129–136

    Article  Google Scholar 

  • Bourn D, Prescott J (2002) A comparison of the nutritional value, sensory qualities and food safety of organically and conventionally produced fruits. Crit Rev Food Sci Nutr 42:1–34

    Article  PubMed  Google Scholar 

  • Bravo C, Giráldez JV, González P, Ordóñez R, Perea F (2007) Long term influence of conservation tillage on chemical properties of surface horizon and legume crops yield in a Vertisol of southern Spain. Soil Sci 172:141–148

    Article  CAS  Google Scholar 

  • Brentrup F, Ktisters J, Kuhlmann H, Lammel J (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. theoretical concept of a LCA method tailored to crop production. Eur J Agron 20:247–264

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G, Hilton TC (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  • Brown LR (2004) Outgrowing the earth. Earth Policy Institute, Washington DC

    Google Scholar 

  • Brown JH, Whitham TG, Ernest SKM, Gehring CA (2001) Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293:643–650

    Article  CAS  PubMed  Google Scholar 

  • Bruner AG, Gullison RE, Rice RE, da Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science 291:125–128

    Article  CAS  PubMed  Google Scholar 

  • Brussaard L, Ruiter PC, Brown GG (2007a) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Brussaard L, Pulleman MM, Ouédraogo E, Mando A, Six J (2007b) Soil fauna and soil function in the fabric of the food web. Pedobiologia 50:447–462

    Article  Google Scholar 

  • Burel F, Baudry J, Lefeuvre JC (1993) Landscape structure and the control of water runoff. In: Bunce RGH, Ryszkowski L, Paoletti MG (eds) Landscape ecology and agroecosystems. Lewis, Boca Raton, pp 41–47

    Google Scholar 

  • Buringh P (1989) Availability of agricultural land for crops and livestock production. In: Pimental LD, Hall CW (eds) Food and natural resources. Academic, San Diego, pp 69–83

    Google Scholar 

  • Butorac A (1994) Conservation tillage in Eastern Europe. In: Carter MR (ed) Conservation tillage in temperate agroecosystems. Lewis, Boca Raton, pp 357–374

    Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Cannell M (1995) Forests and the global cycle in the past, present and future. European Forest Institute, Research Report 2, Joensuu, Finland, 66 p

    Google Scholar 

  • Cantero MC, O’Leary GJ, Connor DJ (1995) Stubble retention and nitrogen fertilisation in a fallow-wheat rainfed cropping system. 1. Soil water and nitrogen conservation, crop growth and yield. Soil Till Res 34:79–94

    Article  Google Scholar 

  • Carling PA, Irvine BJ, Hill A, Wood M (2001) Reducing sediment inputs to Scottish streams: a review of the efficacy of soil conservation practices in upland forestry. Sci Total Environ 265:209–227

    Article  CAS  PubMed  Google Scholar 

  • Carney MK, Matson AP (2005) Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems 8:928–940

    Article  CAS  Google Scholar 

  • Cassman KG, Harwood RR (1995) The nature of agricultural systems: food security and environmental balance. Food Policy 20:439–454

    Article  Google Scholar 

  • CBD-United Nations (1993) Convention of biological diversity available on line at: http://www.cbd.int/convention/convention.shtml

  • CE (2000) Council of Europe. European landscape convention-explanatory report & convention, Florence

    Google Scholar 

  • CEC (2005) Commission of the European community. Impact ssessment Guidelines pp 49. In: http://www.mfcr.cz/cps/rde/xbcr/mfcr/SEC_2005_791_Impact_Assessment_Guidelines_2006update.pdf

  • CEU Council of the European Union (2006) Adoption of the renewed EU sustainable development strategy. Available online at: http://ec.europa.eu/sustainable/sds2006/index_en.htm

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326

    Article  CAS  PubMed  Google Scholar 

  • Chapman SJ, Thurlow M (1998) Peat respiration at low temperatures. Soil Biol Biochem 30:1013–1021

    Article  CAS  Google Scholar 

  • Chemini C, Rizzoli A (2003) Land use change and biodiversity conservation in the Alps. J Mt Ecol 7:1–7

    Google Scholar 

  • Clarke RA, Stanley CD, McNeal BL, McLeod BW (2002) Impact of agricultural land use on nitrate levels in Lake Manatee, Florida. J Soil Water Conserv 57:106–111

    Google Scholar 

  • Cole CV, Cerri C, Minami K, Mosier A, Rosenberg N, Sauerbeck D, Dumanski J, Duxbury J, Freney J, Rupta R, Heinemeyer O, Kolchugina T, Lee J, Paustian K, Powlson D, Sampson N, Tiessen H, Van Noordwijk M, Zhao Q, Abrol IP, Barnwell T, Campbell CA, Desjardin RL, Feller C, Garin P, Glendining MJ, Gregorich EG, Johnson D, Kimble J, Lal R, Monreal C, Ojima DS, Padgett M, Post W, Sombroek W, Tarnocai C, Vinson T, Vogel S, Ward G (1996) Agricultural options for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) Climate change 1995- Impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge University Press, New York, pp 745–771

    Google Scholar 

  • Comins JS, Sendra JB, Sanz FM (1993) Crisis and permanence of the traditional Mediterranean landscape in the central region of Spain. Landscape Urban Plan 23:155–166

    Article  Google Scholar 

  • Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355

    Article  Google Scholar 

  • Cornforth IC (1999) Selecting indicators for assessing sustainable land management. J Environ Manage 56:173–179

    Article  Google Scholar 

  • Cotching WE, Kidd DB (2010) Soil quality evaluation and the interaction with land use and soil order in Tasmania, Australia. Agric Ecosyst Environ 137:358–366

    Article  Google Scholar 

  • Cowie A, Schneider UA, Montanarella L (2007) Potential synergies between existing multilateral environmental agreements in the implementation of land use, land-use change and forestry activities. Environ Sci Policy 10:335–352

    Article  Google Scholar 

  • Cox WJ, Zobel RW, Van Es HM, Otis DJ (1990) Tillage effects on some soil physical and corn physiological characteristics. Agron J 82:806–812

    Article  Google Scholar 

  • CTIC (1999) What’s conservation tillage? Brochure, Conservation Technology Information Center, Core 4 program, Lafayette, IN, USA, 2 pp

    Google Scholar 

  • Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 7:753–769

    Article  Google Scholar 

  • Daly H (1990) Toward some operational principles of sustainable development. Ecol Econ 2:1–6

    Article  Google Scholar 

  • Daly H (1992) Allocation, distribution and scale: towards an economics that is efficient, just and sustainable. Ecol Econ 6:185–193

    Article  Google Scholar 

  • Dawes WR, Gilfedder M, Walker GR, Evans WR (2004) Biophysical modelling of catchment-scale surface water and groundwater response to land-use change. Math Comput Simulat 64:3–12

    Article  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    Article  CAS  PubMed  Google Scholar 

  • De Graaff J, Eppink LA (1999) Olive oil production and soil conservation in southern Spain in relation to EU subsidy policies. Land Use Policy 16:259–267

    Article  Google Scholar 

  • De Graaff J, Durán ZVH, Jones N, Fleskens L (2008) Olive production systems on sloping land: prospects and scenarios. J Environ Sci 89:129–139

    Google Scholar 

  • De la Rosa D (2005) Soil quality evaluation and monitoring based on land evaluation. Land Degrad Dev 16:551–559

    Article  Google Scholar 

  • De la Rosa D, Mayol F, Díaz PE, Fernández M, De la Rosa D Jr, De la Rosa D, Mayol F, Díaz PE, Fernández M, De la Rosa D Jr (2004) A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection. Environ Modell Softw 19:929–942

    Article  Google Scholar 

  • De Wit CT, Huisman H, Rabbinge R (1987) Agriculture and its environment: are there other ways? Agric Syst 23:211–236

    Article  Google Scholar 

  • Dengiz O, Baskan O (2009) Land quality assessment and sustainable land use in salt lake (Tuz Golu) specially protected area. Environ Monit Assess 148:233–243

    Article  PubMed  Google Scholar 

  • Descroix L, González BJL, Viramontes D, Poulenard J, Anaya E, Esteves M, Estrada J (2008) Gully and sheet erosion on subtropical mountain slopes: their respective roles and the scale effect. Catena 72:325–339

    Article  Google Scholar 

  • Dexter AR (2004a) Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120:201–214

    Article  Google Scholar 

  • Dexter AR (2004b) Soil physical quality: Part II. Friability, tillage, tilth and hard-setting. Geoderma 120:215–225

    Article  Google Scholar 

  • Dexter AR (2004c) Soil physical quality: Part III: unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 120:227–239

    Article  Google Scholar 

  • Di Pietro F (2001) Assessing ecologically sustainable agricultural land-use in the Central Pyrénées at the field and landscape level. Agric Ecosyst Environ 86:93–103

    Article  Google Scholar 

  • Dollacker A, Rhodes C (2007) Integrating crop productivity and biodiversity conservation pilot initiatives developed by Bayer CropScience. Crop Prot 26:408–416

    Article  Google Scholar 

  • Dömpke S, Succow M (1998) Cultural Landscapes and Nature Conservation in Northern Eurasia. Naturschutzbund Deutschland, AIDEnvironment, and The Nature Conservation Bureau, Bonn

    Google Scholar 

  • Donald PF, Pisano G, Rayment MD, Pain DJ (2002) The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric Ecosyst Environ 89:167–182

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Doran JW, Stamatiadis SI, Haberern J (2002) Soil health as an indicator of sustainable management. Agric Ecosyst Environ 88:107–110

    Article  Google Scholar 

  • Döring TF, Brandt M, Heß J, Finckh RM, Saucke H (2005) Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res 94:238–249

    Article  Google Scholar 

  • Douglas M (1998) The concept of conservation effectiveness. ENABLE – Newsletter of the Association for Better Land Husbandry 9:21–29

    Google Scholar 

  • Duff B, Rasmussen PE, Smiley RW (1995) Wheat-fallow systems in semi-arid regions of the Pacific NW America. In: Barnett V, Payne R, Steiner R (eds) Agricultural sustainability: economic, environmental and statistical considerations. Wiley, Chichester, pp 87–109

    Google Scholar 

  • Duponnois R, Galiana A, Prin Y (2008) The mycorrhizosphere effect: a multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In: Siddiqui AZ, Akhtar SM, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht,pp 227–240

    Chapter  Google Scholar 

  • Durán ZVH, Rodríguez PCR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev 28:65–86

    Article  Google Scholar 

  • Durán ZVH, Martínez RA, Aguilar RJ (2004) Nutrient losses by runoff and sediment from the taluses of orchard terraces. Water Air Soil Pollut 153:355–373

    Article  Google Scholar 

  • Durán ZVH, Rodríguez PCR, Martín, PFJ (2006) Nutrient leaching, leaf-nutrient status, and fruit yield of cherimolia (Annona cherimola Mill.) grown in orchard terraces (SE Spain). In: Fotyma M, Kaminiska B (eds), Fragmenta Agronomica, Warsaw, Poland, pp 733–734

    Google Scholar 

  • Durán ZVH, Rodríguez PCR, Francia JR, Martínez RA, Cárceles RB (2008) Benefits of plant strips for sustainable mountain agriculture. Agron Sustain Dev 28:497–505

    Article  CAS  Google Scholar 

  • Durán ZVH, Rodríguez PCR, Arroyo PL, Martínez RA, Francia JR, Cárceles RB (2009) Soil conservation measures in rainfed olive orchards in south-eastern Spain: impacts of plant strips on soil water dynamics. Pedosphere 19:453–464

    Article  Google Scholar 

  • Easterling IWE, Hurd BH, Smith JB (2004) Coping with climate change. The role of adaptation in the United States. Pew Centre on Global Climate Change, Arlington

    Google Scholar 

  • EC (1998) European Commission. State of application of regulation (EEC) no. 2078/92: Evaluation of agri-environmental programmes. DG IV; Working Documents VI/7655/98, Brussels, Belgium.

    Google Scholar 

  • ECAF (1999) European Conservation Agriculture Federation. Conservation agriculture in Europe: environmental, economic and EU policy perspectives. Brussels, Belgium

    Google Scholar 

  • Eckert DJ (1984) Tillage system x planting date interactions in corn production. Agron J 76:580–582

    Article  Google Scholar 

  • Edmunds WK (2003) Renewable and non-renewable groundwater in semi-arid and arid regions. Dev Water Sci 50:265–280

    Article  Google Scholar 

  • EEA (1999) European Environment Agency: environment in the European Union at the turn of the century. Environmental assessment report No. 2. European Environment Agency, Copenhagen

    Google Scholar 

  • EEA (2005) European Environment Agency. The European Environment. State and Outlook Copenhagen, Denmark

    Google Scholar 

  • Ellison K (2006) The nature of farms. Front Ecol Environ 4:280–280

    Article  Google Scholar 

  • Ericksen PJ, McSweeney K, Madison FW (2002) Assessing linkages and sustainable land management for hillside agroecosystems in Central Honduras: analysis of intermediate and catchment scale indicators. Agric Ecosyst Environ 91:295–311

    Article  Google Scholar 

  • ESA-SP (2006) European Spatial Agency SP-1304. The Changing Earth. New Scientific Challenges for ESA’s Living Planet Programme, The Netherlands

    Google Scholar 

  • Eswaran H, Kimble J (2003) Land quality assessment and monitoring: the next challenge for soil science. Pedosphere 13:1–3

    Google Scholar 

  • Ewel JJ (1999) Natural systems as models for the design of sustainable systems of land use. Agroforest Syst 45:1–21

    Article  Google Scholar 

  • Falloon P, Smith P, Powlson DS (2004) Carbon sequestration in arable land – the case for field margins. Soil Use Manage 20:240–247

    Article  Google Scholar 

  • Fang B, Van den Berg MM, Wang G, Roetter RP (2005) Identification of technology options for reducing nitrogen pollution in cropping systems of Pujiang. J Zhejiang Univ Sci 6:981–990

    Article  CAS  Google Scholar 

  • FAO (1993) FESLM: an international framework for evaluating sustainable land management, vol 73, World Soil Resources Report. FAO, Rome

    Google Scholar 

  • FAO, Food and Agriculture Organization (1984) Erosion and productivity: a review of its effects and research with suggestions for further investigation. FAO, Rome

    Google Scholar 

  • Farina A (1997) Landscape structure and breeding bird distribution in a sub-Mediterranean agro-ecosystem. Landscape Ecol 12:365–378

    Article  Google Scholar 

  • Farmer RA, Nisbet TR (2004) An overview of forest management and change with respect to environmental protection in the UK. Hydrol Earth Syst Sci 8:279–285

    Article  Google Scholar 

  • Favis MDT, Guerra AJT (1999) The implications of general circulation model estimates of rainfall for future erosion: a case study from Brazil. Catena 37:329–354

    Article  Google Scholar 

  • Fernández JE, Moreno F, Murillo JM, Cuevas MV, Kohler F (2001) Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil. Agric Water Manage 51:29–51

    Article  Google Scholar 

  • Fernández UO, Virto I, Bescansa P, Imaz MJ, Enrique A, Karlen DL (2009) No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Till Res 106:29–35

    Article  Google Scholar 

  • Fleskens L, de Graaff J (2008) A sustainable future for olive production on sloping land?J Environ Manage 89:73–74

    Article  PubMed  Google Scholar 

  • Fließbach A, Oberholzer HR, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284

    Article  Google Scholar 

  • Foley JA, Costa MH, Delire C, Ramankutty N, Snyder PK (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 22:570–574

    Article  CAS  Google Scholar 

  • Follett RF, Kimble JM, Lal R (2000) The potential of U.S. grazing lands to sequester soil carbon. In: Follett RF, Kimble JM, Lal R (eds) he potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis, Boca Raton, pp 401–430

    Google Scholar 

  • Follett RF, Shafer SR, Jawson MD, Franzluebbers AJ (2005) Research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA. Soil Till Res 83:159–166

    Article  Google Scholar 

  • Forestry Commission Scotland (2006) The Scottish forestry strategy. Edinburgh, UK. Available online at: http://www.forestry.gov.uk/pdf/SFS2006fcfc101.pdf/$FILE/SFS2006fcfc101.pdf

  • Forman RTT (1990) Ecologically sustainable landscapes: the role of spatial configuration. In: Zonneveld IS, Forman RTT (eds) Changing landscapes: in ecological perspective. Springer, New York, pp 261–278

    Google Scholar 

  • Fowler R, Rockstrom J (2001) Conservation tillage for sustainable agriculture. An agrarian evolution gathers momentum in Africa. Soil Till Res 61:93–107

    Article  Google Scholar 

  • Francia MJR, Durán ZVH, Martínez RA (2006) Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci Total Environ 358:46–60

    Article  CAS  Google Scholar 

  • Freibauer A, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Fresco LO, Kroonenberg SB (1992) Time and spatial scales in ecological sustainability. Land Use Policy 9:155–168

    Article  Google Scholar 

  • Fry G, Tveit MS, Ode A, Velarde MD (2009) The ecology of visual landscapes: exploring the conceptual common ground of visual and ecological landscape indicators. Ecol Indic 9:933–947

    Article  Google Scholar 

  • Fu B, Gulinck H, Masum MZ (1994) Loess erosion in relation to land use changes in the Ganspoel catchment, central Belgium. Land Degrad Rehabil 5:261–270

    Article  Google Scholar 

  • Fu BJ, Liu SL, Lu YH, Chen LD, Ma KM, Liu GH (2003) Comparing the soil quality changes of different land uses determined by two quantitative methods. J Environ Sci 15:167–172

    CAS  Google Scholar 

  • García RJM (2010) The effects of land uses on soil erosion in Spain: a review. Catena 81:1–11

    Article  Google Scholar 

  • García TI, Martínez GG, Muriel FJL, Jiménez BJA, Vanderlinden K, Perea TF (2007) Conservación y disponibilidad del agua en el suelo en función del laboreo. Vida Rural 251:29–31

    Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52:143–150

    Article  Google Scholar 

  • Gemma D, Giovanni P, Mafia G (2003) Land use change effects on abandoned terraced soils in a Mediterranean catchment, NE Spain. Catena 52:23–37

    Article  Google Scholar 

  • Ghersa CM, Ferraro DO, Omacini M, Martínez GMA, Perelman S, Satorre EH, Soriano A (2002) Farm and landscape level variables as indicators of sustainable land-use in the Argentine Inland-Pampa. Agric Ecosyst Environ 93:279–293

    Article  Google Scholar 

  • Gheysari M, Mirlatifi MS, Homaee M, Asadi MME, Hoogenboom G (2009) Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric Water Manage 96:946–954

    Article  Google Scholar 

  • Giupponi C, Ramanzin M, Sturaro E, Fuser S (2006) Climate and land use changes, biodiversity and agri-environmental measures in the Belluno province, Italy. Environ Sci Policy 9:163–173

    Article  Google Scholar 

  • Goméz JA, Amato A, Celano G, Koubouris CG (2008) Organic olive orchards on sloping land: more than a specialty niche production system? J Environ Sci 89:99–109

    Google Scholar 

  • Gómez JA, Giráldez JV, Fereres E (2001) Analysis of infiltration and runoff in an olive orchard under no-till. Soil Sci Soc Am J 65:291–299

    Article  Google Scholar 

  • Goudie SA (2003) Enhanced salinisation. Dev Water Sci 50:287–293

    Article  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Greenslade P (1992) Conserving invertebrate diversity in agricultural, forestry and natural ecosystems in Australia. Agric Ecosyst Environ 40:297–312

    Article  Google Scholar 

  • Gregor L, Anette R (2002) Land use driven conditions for habitat structure: a case study from the Ecuadorian Andes. Dan J Geogr 102:79–92

    Google Scholar 

  • Gregorich EG (1996) Soil quality: a Canadian perspective. Proceedings of Soil Qual. Indicators Workshop, Ministry of Agriciculture and Fisheries, and Lincoln Soil Quality Research Center. Lincoln University, Christchurch, NZ

    Google Scholar 

  • Grewal RS, Ehlers RU, Shapiro IID (2005) Nematodes as biocontrol agents. CABI Publishing, Wallingford, Oxfordshire OX10 8DE, UK, 505 p

    Google Scholar 

  • Grey CNB, Nieuwenhuijsen MJ, Golding J (2005) The use and disposal of household pesticides. Environ Res 97:109–115

    Article  CAS  PubMed  Google Scholar 

  • Griffith DR, Mannering JV, Box JE (1986) Soil moisture management in reduced tillage. In: Sprague MA, Triplett GB (eds) No-tillage and surface tillage agriculture. Wiley, New York,pp 19–58

    Google Scholar 

  • Grove AT, Rackham O (2001) The nature of Mediterranean Europe: an ecological history. Yale University Press, New Haven and London, 384 p

    Google Scholar 

  • Gu S, Komatsuzaki M, Moriizumi S, Mu Y (2004) Soil nitrogen dynamics in relation to cover cropping. Jpn J Farm Work Res 39:9–16

    Google Scholar 

  • Guérif J, Richard G, Dürr C, Machet JM, Recous S, Roger-Estrade J (2001) A review of tillage effects on crop residue management, seedbed conditions and seedling establishment. Soil Till Res 61:13–32

    Article  Google Scholar 

  • Gulinck H, Mugica M, de Lucio JV, Atauri JA (2001) A framework for comparative landscape analysis and evaluation based on land cover data, with an application in the Madrid region (Spain). Landscape Urban Plan 55:257–270

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360

    Article  Google Scholar 

  • Gupta US (1995) In: Gupta US (ed) Production and improvement of crops for drylands. Science Publishers, Lebanon, p 449

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Gustafsson JE (1986) Resources management in India and China – an overview. J Rural Stud 2:139–151

    Article  Google Scholar 

  • Gzyl J (1999) Soil protection in Central and Eastern Europe. J Geochem Explor 66:333–337

    Article  CAS  Google Scholar 

  • Haberern J (1992) Coming full circle – the new emphasis on soil quality. Am J Alternative Agric 7:3–4

    Article  Google Scholar 

  • Haberl H, Wackernagel M, Wrbka T (2004) Land use and sustainability indicators. An introduction. Land Use Policy 21:193–198

    Article  Google Scholar 

  • Haines YR (2000) Sustainable development and sustainable landscapes: defining a new paradigm for landscape ecology. Fennia 178:7–14

    Google Scholar 

  • Hale ML, Lurz PWW, Shirley MDF, Rushton S, Fuller RM, Wolff K (2001) Impact of landscape management on the genetic structure of red squirrel populations. Science 293:2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Halsnaes K, Verhagen J (2007) Development based climate change adaptation and mitigation: conceptual issues and lessons learned in studies in developing countries. Mitig Adapt Strat Glob Change 12:665–684

    Article  Google Scholar 

  • Hansen B, Fjelsted AH, Kristensen SE (2001) Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agric Ecosyst Environ 83:11–26

    Article  Google Scholar 

  • Haring AM, Dabbert S, Aurbacher J, Bichler B, Eichert C, Gambelli D, Lampkin N, Offermann F, Olmos S, Tuson J, Zanoli R (2004) Impact of CAP measures on environmentally friendly farming systems: status quo. Analysis and recommendations – the case of organic farming. Report Prepared for the European Commission, Brussels, Belgium. http://europa.eu.int/comm/environment/agriculture/studies.htm

  • Hartig EK, Grozev O, Rosenzweig C (1997) Climate change, agriculture and wetlands in Eastern Europe: vulnerability, adaptation and policy. Clim Change 36:107–121

    Article  Google Scholar 

  • Hatfield CB (1997) Oil back on the global agenda. Nature 387:121

    Article  CAS  Google Scholar 

  • Heilig GK (1996) Who is changing the land? Lifestyles, population, and global land-use change. In: Ramphal S, Sinding SW (eds) Population growth and environmental issues. Westport, London, UK, pp 109–128

    Google Scholar 

  • Henseler M, Wirsig A, Herrmann S, Krimly T, Dabbert S (2009) Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agric Syst 100:31–42

    Article  Google Scholar 

  • Hernández L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219

    Article  PubMed  CAS  Google Scholar 

  • Herrick JE (2000) Soil quality: an indicator of sustainable land management? Appl Soil Ecol 15:75–83

    Article  Google Scholar 

  • Herrmann S, Osinski E (1999) Planning sustainable land use in rural areas at different spatial levels using GIS and modelling tools. Landscape Urban Plan 46:93–101

    Article  Google Scholar 

  • Hietala KR, Jarvenpaa T, Helenius J (2004) Value of semi-natural areas as biodiversity indicators in agricultural landscapes. Agric Ecosyst Environ 101:9–19

    Article  Google Scholar 

  • Hitz S, Smith J (2004) Estimating global impacts from climate change. Global Environ Change Part A 14:201–218

    Article  Google Scholar 

  • Hohl H, Varma A (2010) Soil: the living matriz. In: Sherameti I, Varma A (eds) Soil heavy metals, soil biology. Springer, Berlin, pp 1–18

    Chapter  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice PV, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130

    Article  Google Scholar 

  • Holland J, Birkett T, Begbie M, Southway S, Thomas CFG (2003) The spatial dynamics of predatory arthropods and the importance of crop and adjacent margin habitats. Landscape Manag Funct Biodiv 26:65–70

    Google Scholar 

  • Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13:299–313

    Article  Google Scholar 

  • Hope RA, Jewitt GPW, Gowing JW (2004) Linking the hydrological cycle and rural livelihoods: a case study in the Luvuvhu catchment, South Africa. Phys Chem Earth 29:1209–1217

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, University Press, New York, p 94

    Google Scholar 

  • Hudgens BR, Haddad NM (2003) Predicting which species will benefit from corridors in fragmented landscapes from population growth models. Am Nat 161:808–820

    Article  PubMed  Google Scholar 

  • Huisman JA, Breuer L, Frede HG (2004) Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change. Phys Chem Earth 29:749–758

    Google Scholar 

  • Hundecha Y, Bárdossy A (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol 292:281–295

    Article  Google Scholar 

  • Hussain I, Olson KR, Ebelhar SA (1999) Impacts of tillage and no-till on production of maize and soybean on an eroded Illinois silt loam soil. Soil Till Res 52:37–49

    Article  Google Scholar 

  • Inanaga S (2002) Aiming to realize sustainable dryland farming. Farming Jpn 36:16–20

    Google Scholar 

  • Inanaga S, Eneji EA, An P, Shimizu H (2005) A recipe for sustainable agriculture in drylands. In: Omasa K, Nouchi I, De Kok LJ (eds) Plant responses to air pollution and global change. Springer, Nikkei, pp 285–294

    Chapter  Google Scholar 

  • Ineson P, Taylor, Benham DG, Poskitt J, Harrison AF, Taylor K, Woods C (1998a) Effects of climate change on nitrogen dynamics in upland soils. 2. A soil warming study. Glob Change Biol 4:153–161

    Article  Google Scholar 

  • Ineson P, Taylor K, Harrison AF, Poskitt J, Benham DG, Tipping E, Woof C (1998b) Effects of climate change on nitrogen dynamics in upland soils. A transplant approach. Glob Change Biol 4:143–152

    Article  Google Scholar 

  • IPCC (1996) IPCC second assessment: climate change 1995. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2000) Intergovernmental panel on climate change. In: Watson R, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land-use change, and forestry:a special report. Cambridge University Press, Cambridge

    Google Scholar 

  • Isart J, Llerena JJ (1995) Biodiversity and land use: the role of organic farming. The European Network for Scientific Research Coordination in Organic Farming, Proceedings of the First ENOF Workshop. CSIC, Barcelona, Spain

    Google Scholar 

  • Jasper DA (1994) Bioremediation of agricultural and forestry soils with symbiotic microorganisms. Aust J Soil Res 32:1301–1319

    Article  Google Scholar 

  • Jeanneret P, Schtipbach B, Luka H (2003) Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agric Ecosyst Environ 98:311–320

    Article  Google Scholar 

  • Jenkins M (2003) Prospects for Biodiversity. Science 302:1175–1177

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson DS (1988) Soil organic matter and its dynamics. In: Wild A (ed) Russell’s soil conditions and plant growth, 11th edn. Longman, London, pp 564–607

    Google Scholar 

  • Jenkinson DS, Hart PBS, Rayner JH, Parry LC (1987) Modelling the turnover of organic matter in long-term experiments at Rothamstead. Intercol Bull 15:1–8

    Google Scholar 

  • Jewitt GPW, Garratt JA (2004) Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa. Phys Chem Earth 29:1233–1241

    Google Scholar 

  • Johnson MD, Lowery B (1985) Effect of three conservation tillage practices on soil temperature and thermal properties. Soil Sci Soc Am J 49:1547–1552

    Article  Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439

    Article  Google Scholar 

  • Kamp T, Steindl H, Hantschel RE, Beese F, Munch JC (1998) Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biol Fertil Soils 27:307–314

    Article  CAS  Google Scholar 

  • Kamp T, Gattinger A, Wild U, Munch JC (2001) Methane and nitrous oxide emissions from drained and restored peat in the Danube valley. Verhandlungen der Gesellschaft für Ökologie 31, Parey, Berlin, Germany, 193 p

    Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality:a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Karlen DL, Andrews SS, Doran JW (2001) Soil quality: current concepts and applications. Adv Agron 74:1–40

    Article  CAS  Google Scholar 

  • Karlen DL, Ditzler CA, Andrews SS (2003) Soil quality: why and how? Geoderma 114:145–156

    Article  CAS  Google Scholar 

  • Karunatilake U, Van Es HM, Schindelbeck RR (2000) Soil and maize response to plow and no-tillage alter alfalfa-to-maize conversion on a clay loam soil in New York. Soil Till Res 55:31–42

    Article  Google Scholar 

  • Komatsuzaki M, Mu Y (2005) Effects of tillage system and cover cropping on carbon and nitrogen dynamics. In: Proceedings and abstracts of ecological analysis and control of greenhouse gas emission from agriculture in Asia, Ibaraki, Japan, pp 62–67

    Google Scholar 

  • Ladd JN, Amato M, Oades JM (1985) Decomposition of plant material in Australian soils. III. Residual organic and microbial biomass C and N from isotope labelled legume material and soil organic matter, decomposing under field conditions. Aust J Soil Res 23:603–611

    Article  CAS  Google Scholar 

  • Lado M, Paz A, Ben-Hur M (2004) Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss. Soil Sci Soc Am J 68:935–942

    Article  CAS  Google Scholar 

  • Lafond GP, Boyetchko SM, Brandt SA, Clayton GW, Entz MH (1996) Influences of changing tillage practices on crop production. Can J Plant Sci 76:641–649

    Google Scholar 

  • Lal R (1979) Importance of tillage systems in soil and water management in the tropics. In: Lal R (ed) Soil tillage and crop production, vol 2, IITA Proceedings., pp 25–32

    Google Scholar 

  • Lal R (1994) Soil erosion by wind and water: problems and prospects. In: Lal R (ed) Soil erosion, research methods, 2nd edn. St. Lucie, Delray Beach, pp 1–10

    Google Scholar 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17:319–464

    Article  Google Scholar 

  • Lal R (2001) Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Clim Change 15:35–72

    Article  Google Scholar 

  • Lal R (2004a) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosyst 70:103–116

    Article  CAS  Google Scholar 

  • Lal R (2004b) Carbon sequestration in dryland ecosystems. Environ Manage 33:528–544

    Article  PubMed  Google Scholar 

  • Lal R (2004c) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2004d) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2007) World soils and global issues. Soil Till Res 97:1–4

    Article  Google Scholar 

  • Lal R, Ahmadi M (2000) Axle load and tillage effects on crop yield for two soils in central Ohio. Soil Till Res 54:111–119

    Article  Google Scholar 

  • Lal R, Logan TJ, Fausey NR, Eckert DJ (1989) Long-term tillage and wheel traffic effects on a poorly drained Mollic Ochraqualf in Northwest Ohio. 1. Soil physical properties, root distribution, and grain yield of corn and soy bean. Soil Till Res 14:341–358

    Article  Google Scholar 

  • Lal R, Kimble JM, Follett RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press. Chelsea, MI, USA

    Google Scholar 

  • Lal R, Pimentel D, Van O, Kristof SJ, Govers G, Quine T, Gryze SD (2008) Soil erosion: a carbon sink or source? Science 319:1040–1042

    Article  CAS  PubMed  Google Scholar 

  • Lamberton G (2005) Sustainability accounting – a brief history and conceptual framework. Accounting Forum 29:7–26

    Article  Google Scholar 

  • Lambin EF, Rounsevell MDA, Geist HJ (2000) Are agricultural land-use models able to predict changes in land-use intensity? Agric Ecosyst Environ 82:321–321

    Article  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of landuse and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241

    Article  Google Scholar 

  • Lampurlanes J, Angbs P, Cantero MC (2002) Tillage effects on water storage during fallow, and on barley root growth and yield in two contrasting soils of the semi-arid Segarra region in Spain. Soil Till Res 65:207–220

    Article  Google Scholar 

  • Larson WE, Pierce FJ (1991) Conservation and enhancement of soil quality. In: Dumanski J (ed) Evaluation for sustainable land management in the developing world. Proceedings of the international workshop, Chiang Rai, Thailand, Technical papers, vol 2. International Board for Soil Research and Management, Bangkok, pp 175–203

    Google Scholar 

  • Lefroy RDB, Bechstedt HD, Rais M (2000) Indicators for sustainable land management based on farmer surveys in Vietnam, Indonesia, and Thailand. Agric Ecosyst Environ 81:137–146

    Article  Google Scholar 

  • Leifeld J, Kogel KI (2005) Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155

    Article  CAS  Google Scholar 

  • Leirlos MC, Trasar CC, Seoane S, Gil SF (1999) Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol Biochem 31:327–335

    Article  Google Scholar 

  • Leitch C, Harbor J (1999) Impacts of land use change on freshwater runoff into the near-coastal zone, Holetown Watershed, Barbados: comparisons of long-term to single-storm effects. J Soil Water Conserv 54:584–592

    Google Scholar 

  • Lespez L (2003) Geomorphic responses to long-term land use changes in Eastern Macedonia (Greece). Catena 51:181–208

    Article  Google Scholar 

  • Levy PE, Cannell MGR, Friend AD (2004) Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environ Change 14:21–30

    Article  Google Scholar 

  • Lindwall CW, Anderson DT (1981) Agronomic evaluation of minimum tillage systems for summer fallow in southern Alberta. Can J Plant Sci 61:247–253

    Article  Google Scholar 

  • Lobley M, Butler A, Reed M (2009) The contribution of organic farming to rural development: an exploration of the socio-economic linkages of organic and non-organic farms in England. Land Use Policy 26:723–735

    Article  Google Scholar 

  • Loehr CR (1974) Agricultural waste management: problems, processes, and approaches. Academic, New York

    Google Scholar 

  • Lohila A, Aurela M, Tuovinen JP, Laurila T (2004) Annual CO2 exchange of a peat field growing spring barley or perennial forage grass. J Geophys Res 109, D18116. doi: 10.1029/2004JD004715

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Sghmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Lowrance R, Hendrix PF, Odum EP (1986) A hierarchical approach to sustainable agriculture. Am J Alternative Agric 4:169–173

    Google Scholar 

  • Lyson TA (2002) Advanced agricultural biotechnologies and sustainable agriculture. Trends Biotechnol 20:193–196

    Article  CAS  PubMed  Google Scholar 

  • MacCormack H (1995) Sustainable agriculture versus organic farming. In: Gardner BB (ed) “What is Sustainable Agriculture?” Planting the future: developing an agriculture that sustains land and community. Iowa State University Press, Iowa, pp 60–61

    Google Scholar 

  • Mäder P, Fliebbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Magdoff F (1992) Building soils for better crops: organic matter management. University of Nebraska Press, Lincoln, pp 23–38

    Google Scholar 

  • Mahe G, Paturel JE, Servat E, Conway D, Dezetter A (2005) The impact of land use change on soil water holding capacity and fiver flow modelling in the Nakambe River, Burkina-Faso.J Hydrol 300:33–43

    Article  Google Scholar 

  • Mahmood R, Hubbard KG (2003) Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J Hydrol 280:72–90

    Article  Google Scholar 

  • Mahmood R, Hubbard KG (2004) An analysis of simulated long-term soil moisture data for three land uses under contrasting hydroclimatic conditions in the Northern Great Plains.J Hydrometeorol 5:160–179

    Article  Google Scholar 

  • Malhi Y, Meir P, Brown S (2002) Forests, carbon and global climate. Philos Trans Royal Soc London 360:1567–1591

    CAS  Google Scholar 

  • Maljanen M, Martikainen PJ, Walden J, Silvola J (2001) CO2 exchange in an organic field growing barley or grass in eastern Finland. Global Change Biol 7:679–692

    Article  Google Scholar 

  • Maljanen M, Komulainen VM, Hytonen J, Martikainen P, Laine J (2004) Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil characteristics. Soil Biol Biochem 36:1801–1808

    Article  CAS  Google Scholar 

  • Maltby E, Immirzi CP (1993) Carbon dynamics in peatlands and other wetlands soils: regional and global perspective. Chemosphere 27:999–1023

    Article  CAS  Google Scholar 

  • Mando A, Ouattara B, Sedogo M, Stroosnijder L, Ouattara K, Brussaard L, Vanlauwe B (2005) Long-term effect of tillage and manure application on soil organic fractions and crop performance under Sudano-Sahelian conditions. Soil Till Res 80:95–101

    Article  Google Scholar 

  • Mannering JV, Fenster CR (1983) What is conservation tillage? J Soil Water Conserv 38:141–143

    Google Scholar 

  • Manning EW (1986) Towards sustainable land use: a research agenda for Canadian land resource issues. Paper presented at the Canada-China Bilateral Symposium on Territorial Development and Management. Beijing, China

    Google Scholar 

  • Manson SM (2001) Simplifying complexity: a review of complexity theory. Geoforum 32:405–414

    Article  Google Scholar 

  • Martínez RA, Durán ZVH, Francia MFR (2006) Soil erosion and runoff response to plant cover strips on semiarid slopes (SE Spain). Land Degrad Dev 17:1–11

    Article  Google Scholar 

  • Marzaioli R, D’Ascoli DE, De Pascale RA, Rutigliano FA (2010) Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl Soil Ecol 44:205–212

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • McConnell SG, Quinn ML (1988) Soil productivity of four land use systems in South-eastern Montana. Soil Sci Soc Am J 52:500–506

    Article  Google Scholar 

  • McGlade J (2004) EU conference on changing land use in Europe-getting the picture, European Environment Agency, 9–12 November, The Netherlands

    Google Scholar 

  • Medley KE (2004) Measuring performance under a landscape approach to biodiversity conservation: the case of USAID/Madagascar. Prog Dev Stud 4:319–341

    Article  Google Scholar 

  • Metzidakis L, Martínez VA, Nieto CG, Basso B (2008) Intensive olive orchards on sloping land: good water and pest management are essential. J Environ Sci 89:120–128

    CAS  Google Scholar 

  • Meyer WB, Turner BL (1994) Changes in land use and land cover. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitchell B (1986) The evolution of integrated resource management. In: Lang R (ed) Integrated approaches to resource planning and management. Resource management programs. The Banff Centre School of Management, Banff

    Google Scholar 

  • Mitchell CC, Arriaga FJ, Entry JA, Novak JL, Goodman WR, Reeves DW, Rungen MW, Traxler GJ (1996) The old rotation, 1896–1996: 100 years of sustainable cropping research. Alabama agricultural experiment station bulletin. Auburn University, Alabama, pp 1–26

    Google Scholar 

  • Mitchell N, Espie P, Hankin R (2004) Rational landscape decision-making: the use of meso-scale climatic analysis to promote sustainable land management. Landscape Urban Plan 67:131–140

    Article  Google Scholar 

  • Miura N, Ae N (2005) Possibility of leaching of organic nitrogen in a field under heavy application of organic matter-model experiment using soil columns. Soil Sci Plant Nut 52:134–135

    Article  Google Scholar 

  • Montanarella L (2008) Soil at the interface between agriculture and environment. Available on line at: http://ec.europa.eu/agriculture/envir/report/en/inter_en/report.htm

  • Montero E (2005) Rényi dimensions analysis of soil particle-size distributions. Ecol Model 182:305–315

    Article  Google Scholar 

  • Montero RFJ, Brasa RA (2005) Land and water use management in vine growing by using geographic information systems in Castilla-La Mancha, Spain. Agric Water Manage 77:82–95

    Article  Google Scholar 

  • Müller F, Wiggering H (2003) Umweltziele als Grundlagen für umweltpolitische Prioritatensetzungen. In: Wiggering H, Müller F (eds) Umweltziele und Indikatoren: Wissenschaftliche Anforderungen an ihre Festlegung und Fallbeispiele. Springer, Berlin, Heidelberg, New York, pp 19–27

    Google Scholar 

  • Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–23

    Article  Google Scholar 

  • Myers N, Knoll AH (2001) The biotic crisis and the future of evolution. Proc Natl Acad Sci USA 98:5389–5392

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nabuurs GJ, Daamen WP, Dolman AJ, Oenema O, Verkaik E, Kabat P, Whitmore AP, Mohren GMJ (1999) Resolving issues on terrestrial biospheric sinks in the Kyoto Protocol. Dutch National Programme on Global Air Pollution and Climate Change, Report 410 200 030

    Google Scholar 

  • Nael M, Khademi H, Hajabbasi MA (2004) Response of soil quality indicators and their spatial variability to land degradation in central Iran. Appl Soil Ecol 27:221–232

    Article  Google Scholar 

  • Nandasena KG, O’Hara GW, Tiwari RP, Yates RJ, Kishinevsky BD, Howieson JG (2004) Symbiotic relationships and root nodule ultrastructure of the pasture legume Biserrula pelecinus L. – a new legume in agriculture. Soil Biol Biochem 36:1309–1317

    Article  CAS  Google Scholar 

  • Neville W (1993) The impact of economic development on land functions in Singapore. Geoforum 24:143–163

    Article  Google Scholar 

  • Nykänen H, Alm J, Lang K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357

    Article  Google Scholar 

  • Odling SL (2005) Dollars and sense. Nature 437:614–616

    Article  CAS  Google Scholar 

  • OECD (2003) OECD environmental indicators. Development, measurement and use. Reference Paper, OECD Environmental Performance and Information Division, Paris Cedex, France

    Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104:359–377

    Article  CAS  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Olgerts N, Simon B, Ineta G, Liepins I (2005) The impact of economic, social and political factors on the landscape structure of the Vidzeme Uplands in Latvia. Landscape Urban Plan 70:57–67

    Article  Google Scholar 

  • Olsen LM, Dale HV, Foster T (2007) Landscape patterns as indicators of ecological change at Fort Benning, Georgia, USA. Landscape Urban Plan 79:137–149

    Article  Google Scholar 

  • Olsson S, Regnéll J, Persson A, Sandgren P (1997) Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden. J Paleolimnol 17:275–294

    Article  Google Scholar 

  • Opschoor H, Reijnders L (1991) Towards sustainable development. In: Kuik O, Verbruggen H (eds) Search of indicators of sustainable development. Kluwer, Dordrecht, Boston, London, pp 7–28

    Google Scholar 

  • Osinski E, Meier U, Büchs W, Weickel J, Matzdorf B (2003) Application of biotic indicators for evaluation of sustainable land use – current procedures and future developments. Agric Ecosyst Environ 98:407–421

    Article  Google Scholar 

  • Ouchi S (2001) Application of superabsorbent polymers in Japanese agriculture and greening. In: Osada T, Kajiwara K (eds) Gels handbook. Academic, Tokyo, pp 276–285

    Chapter  Google Scholar 

  • Oweis T, Pala M, Ryan J (1998) Stabilizing rainfed wheat yields with supplemental irrigation and nitrogen in a Mediterranean-type climate. Agron J 90:672–681

    Article  Google Scholar 

  • Oweis T, Zhang H, Pala M (2000) Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment. Agron J 92:231–238

    Google Scholar 

  • Palacios DMP, Mendoza GV, Fernández VJR, Rodríguez RF, Tejedor JMT, Hernández MJM (2009) Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Agric Water Manage 96:1659–1666

    Article  Google Scholar 

  • Pankhurst CE (1994) Biological indicators of soil health and sustainable productivity. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, pp 331–351

    Google Scholar 

  • Pankhurst CE, Lynch JM (1995) 12 The role of soil microbiology in sustainable intensive agriculture. Adv Plant Pathol 11:229–247

    Article  Google Scholar 

  • Pankhurst CE, Double BM, Gupta VVSR (1997) Biological indicators of soil health: synthesis. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 419–435

    Google Scholar 

  • Pankhurst CE, Magarey RC, Stirling GR, Blair RL, Bell MJ, Garside AL (2003) Sugar yield decline joint venture management practices to improve soil health and reduce the effects of detrimental soil biota associated with yield decline of sugarcane in Queensland, Australia. Soil Till Res 72:125–137

    Article  Google Scholar 

  • Paoletti MG (1999) Using bioindicators based on biodiversity to assess landscape sustainability. Agric Ecosys Environ 74:1–18

    Article  Google Scholar 

  • Paoletti MG, Foissner W, Coleman DC (1993) Soil biota, nutrient cycling, and farming systems. Lewis, Boca Raton, p 336

    Google Scholar 

  • Paoletti MG, Dufour DL, Cerda H, Torres F, Pizzoferrato L, Pimentel D (2000) The importance of leaf and litter feeding invertebrates as source of animal protein for the Amazonian Amerindians. Proc Biol Sci 267:2247–2252

    Article  CAS  PubMed  Google Scholar 

  • Park J, Cousins SH (1995) Soil biological health and agro-ecological change. Agric Ecosyst Environ 56:137–148

    Article  Google Scholar 

  • Parr JF, Stewart BA, Hornick SB, Singh RP (1990) Improving the sustainability of dryland farming systems: a global perspective. Adv Soil Sci 13:1–8

    Google Scholar 

  • Parr JF, Papendick RI, Hornick SB, Meyer RE (1992) Soil quality: attributes and relationship to alternative and sustainable agriculture. Am J Alternative Agric 7:5–11

    Article  Google Scholar 

  • Parr JF, Hornick SB, Papendick RI (1994) Soil quality: The foundation of a sustainable agriculture. In: Parr JF, Hornick SB, Simpson ME (eds) Proceedings of the conference at Luiz de Queiroz College of agriculture, University of São Paulo, Piracicaba, SP, Brazil. U.S. Department of Agriculture, Washington DC, pp 73–79

    Google Scholar 

  • Pearce D, Turner RK (1990) Economics of natural resources and the environment. Harvester Wheatsheaf, New York

    Google Scholar 

  • Peet M (1996) Chapter 1: soil management. In: Peet M (ed) Sustainable practices for vegetable production in the south. Pullins, Newburyport, Massachusetts, USA, pp 1–28

    Google Scholar 

  • Peng J, Wang YL, Song ZQ, Jing J, Ding Y (2003) Research progress on evaluation for sustainable land use. Resour Sci 25:85–93

    Google Scholar 

  • Peng J, Wang YL, Li WF, Yue J, Wu J, Zhang Y (2006) Evaluation for sustainable land use in coastal areas: A landscape ecological prospect. Int J Sust Dev World Ecol 13:25–36

    Article  Google Scholar 

  • Peng J, Wang Y, Wu J, Chang Q, Zhang Y (2007) Evaluation for sustainable land use in mountain areas of Northwestern Yunnan Province, China. Environ Monit Assess 133:407–415

    Article  PubMed  Google Scholar 

  • Pennington DW, Potting J, Finnveden G, Lindeijer E, Jolliet O, Rydberg T, Rebitzer G (2004) Life cycle assessment (Part 2): current impact assessment practice. Environ Int 30:721–739

    Article  CAS  PubMed  Google Scholar 

  • Pérez SM, Petit S, Jones L, Bertrand N, Briquel V, Zorini OL, Contini C, Helming K, Farrington JH, Mossello TM, Wascher D, Kienast F, de Groot R (2008) Land use functions – a multifunctionality approach to assess the impact of land use change on land use sustainability. In: Helming K, Pérez SM, Tabbush P (eds) Sustainability impact assessment of land use changes. Springer, Berlin, pp 375–404

    Chapter  Google Scholar 

  • Perrier ER, Salkini AB (1991) Supplemental irrigation in the Near East and North Africa. Kluwer, The Netherlands

    Google Scholar 

  • Pieri C, Dumanski J, Hamblin A, Young A (1995) Land quality indicators. World Bank Discussion Papers 315. Washington DC, USA

    Google Scholar 

  • Pimentel D (1998) Economic benefits of natural biota. Ecol Econ 25:45–47

    Article  Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137

    Article  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Biosci 47:747–757

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity, extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Piorr HP (2003) Environmental policy, agri-environmental indicators and landscape indicators. Agric Ecosyst Environ 98:17–33

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327

    Article  Google Scholar 

  • Potter C (1997) Europe’s changing farmed landscape. In: Pain DJ, Pienkowski MW (eds) Farming and birds in Europe. Academic, London, pp 25–42

    Google Scholar 

  • Poulton PR (1996) The Park Grass experiment 1856–1995. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets, vol I, NATO ASI Series. Springer, Heidelberg, pp 377–384

    Google Scholar 

  • Powell JR (2007) Linking soil organisms within food webs to ecosystem functioning and environmental change. Adv Agron 96:307–350

    Article  Google Scholar 

  • Pulleman MM, Marinissen JCY (2004) Physical protection of mineralizable C in aggregates from long-term pasture and arable soil. Geoderma 120:273–282

    Article  CAS  Google Scholar 

  • Rasmussen KJ (1999) Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Till Res 53:3–14

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res 43:131–167

    Article  Google Scholar 

  • Reid RS, Kruska RL, Muthui N, Taye A, Wotton S, Wilson CJ, Mulatu W (2000) Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: the case of southwestern Ethiopia. Landscape Ecol 15:339–355

    Article  Google Scholar 

  • Reidsma P, Tekelenburg T, van den Berg M, Alkemade R (2006) Impacts of land use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agric Ecosyst Environ 114:86–102

    Article  Google Scholar 

  • Reinken G (1986) Six years comparison between biodynamic and conventional growing of vegetable and apples. In: Vogtmann H, Boechncke E, Fricke I (eds) The importance of biological agriculture in a world of diminishing resources. Verlagsgrruppe, Witzenhausen, pp 164–174

    Google Scholar 

  • Rennings K, Wiggering H (1997) Steps toward indicators of sustainable development: linking economic and ecological concepts. Ecol Econ 20:25–36

    Article  Google Scholar 

  • Rhoton FE, Romkens MJM, Bigham JM, Zobeck TM, Upchurch DR (2003) Ferrihydrite influence on infiltration, runoff, and soil loss. Soil Sci Soc Am J 67:1220–1226

    Article  CAS  Google Scholar 

  • Rigby D, Cáceres D (2001) Organic farming and the sustainability of agricultural systems. Agric Syst 68:21–40

    Article  Google Scholar 

  • Riley H, Berresen T, Ekeberg E, Rydberg T (1994) Trends in reduced tillage research and practice in Scandinavia. In: Carter MR (ed) Conservation tillage in temperature agroecosystems. Lewis, Boca Raton, pp 23–45

    Google Scholar 

  • Riley HCF, Bleken MA, Abrahamsen S, Bergjord AK, Bakken AK (2005) Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in the cool, wet climate of central Norway. Soil Till Res 80:79–93

    Article  Google Scholar 

  • Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in Salamander populations across the Eastern Continental Divide. Am Nat 164:201–213

    Article  PubMed  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radioactive forcing of the atmosphere. Science 289:1922–1925

    Article  CAS  PubMed  Google Scholar 

  • Robinson RA, Wilson JD, Crick HQP (2001) The importance of arable habitat for farmland birds in grassland landscapes. J Appl Ecol 38:1386–1386

    Article  Google Scholar 

  • Rodiek J, DelGuidice G (1994) Wildlife habitat conservation: its relationship to biological diversity and landscape sustainability: A national symposium. Landscape Urban Plan 28:1–3

    Article  Google Scholar 

  • Rodrígues MA, Pereira A, Cabanas JE, Dias L, Pires J, Arrobas M (2006) Crops use-efficiency of nitrogen from manures permitted in organic farming. Eur J Agron 25:328–335

    Article  Google Scholar 

  • Rodríguez PCR, Durán ZVH, Francia MJR, Martínez RA, Cárceles RB (2005) Evaluación de la erosión y contaminación bajo diferentes intensidades de recolección con cubiertas de orégano (Origanum bastetanum L.) en Lanjarón (SE España). Edafología 12:52–54

    Google Scholar 

  • Rodríguez PCR, Durán ZVH, Martínez RA, Francia JR, Cárceles RB (2009a) High reduction of erosion and nutrient loss by decreasing harvest intensity of Lavander grown slopes. Agron Sust Dev 29:363–370

    Article  Google Scholar 

  • Rodríguez PCR, Durán ZVH, Muriel FJL, Martín PFJ, Franco TD (2009b) Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): effects of floristic and topographic alteration on the slope. Agric Ecosyst Environ 134:79–88

    Article  CAS  Google Scholar 

  • Roetter RP, Van Keulen H, Verhagen J, Kuiper M (2007) Agriculture in a dynamic world. In: Roetter RP, Van Keulen H, Kuiper MJ, Verhagen J, Van Laar HH (eds) Science for agriculture and rural development in low-income countries. Springer, Dordrecht, pp 1–6

    Chapter  Google Scholar 

  • Ronda RJ, Van den Hurk BJJM, Holtslag AAM (2002) Spatial heterogeneity of the soil moisture content and its impact on surface flux densities and near-surface meteorology. J Hydrometeorol 3:556–570

    Article  Google Scholar 

  • Roussos PA, Gasparatos D (2009) Apple tree growth and overall fruit quality under organic and conventional orchard management. Sci Hortic 123:247–252

    Article  Google Scholar 

  • Rustigian HL, Santelmann MV, Schumaker NH (2003) Assessing the potential impacts of alternative landscape designs on amphibian population dynamics. Landscape Ecol 18:65–81

    Article  Google Scholar 

  • Sanchéz PA (1987) Soil productivity and sustainabillty in agro forestry systems. In: Steppler HA, Nair PK (eds) Agroforestry: a decade of development. ICRAF, Nairobi

    Google Scholar 

  • Sandhu HS, Wratten SD, Cullen R, Case B (2008) The future of farming: the value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol Econ 64:835–848

    Article  Google Scholar 

  • Sarrantonio M (1998) Building soil fertility and tilth with cover crops. In: Clark A (ed) Managing cover crops profitably, 2nd edn. Sustainable Agriculture Network, Beltsville, pp 16–24

    Google Scholar 

  • Sattler C, Nagel UG, Werner A, Zander P (2010) Integrated assessment of agricultural production practices to enhance sustainable development in agricultural landscapes. Ecol Indic 10:49–61

    Article  Google Scholar 

  • Sauer J, Park T (2009) Organic farming in Scandinavia – productivity and market exit. Ecol Econ 68:2243–2254

    Article  Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Change Biol 1:77–91

    Article  Google Scholar 

  • Schmitzberger I, Wrbka Th, Steurer B, Aschenbrenner G, Peterseil J, Zechmeister HG (2005) How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agric Ecosyst Environ 108:274–290

    Article  Google Scholar 

  • Schneider N, Eugster W, Schichler B (2004) The impact of historical land-use changes on the near-surface atmospheric conditions on the Swiss Plateau. Earth Interact 8:1–27

    Article  Google Scholar 

  • Schulze ED, Freibauer A (2005) Environmental science: carbon unlocked from soils. Nature 437:205–206

    Article  CAS  PubMed  Google Scholar 

  • Seip LK, Wenstop F (2006) Agriculture and land use: agriculture and land use with emphasis on developing countries. In: Seip LK, Wenstop F (eds) A primer on environmental decision-making. An integrative quantitative approach. Springer, Dordrecht, pp 387–410

    Google Scholar 

  • Serra P, Pons X, Saurí D (2008) Land-cover and land-use change in a Mediterranean landscape:a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr 28:189–209

    Article  Google Scholar 

  • Shao J, Ni J, Wei C, Xie D (2005) Land use change and its corresponding ecological responses: a review. J Geogr Sci 15:305–328

    Article  Google Scholar 

  • Sharma P, Rai SC, Sharma R, Sharma E (2004) Effects of land-use change on soil microbial C, N and P in a Himalayan watershed. Pedobiologia 48:83–92

    Article  Google Scholar 

  • Shaw RM, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Shaxson TF (1992) Crossing some watersheds in conservation thinking. In: Tato K, Hurni H (eds) Soil conservation for survival. Soil and Water Conservation Society, Ankeny

    Google Scholar 

  • Shi-ming MA, Sauerborn J (2006) Review of history and recent development of organic farming worldwide. Agric Sci China 5:169–178

    Google Scholar 

  • Simon D (1989) Sustainable development: theoretical construct or attainable goal? Environ Conserv 16:41–48

    Article  Google Scholar 

  • Sinclair HR, Waltman WJ, Waltman SW, Terpstra HP, Reed-Margetan D (1996) Soil ratings for plant growth (SRPG). USDA-NRCS, National Soil Survey Center, Lincoln

    Google Scholar 

  • Singh JS (2002) The biodiversity crisis: a multifaceted review. Curr Sci 82:638–647

    Google Scholar 

  • Skopek V, Vachal J, Sterbacek Z (1991a) Method of approach to landscape stability. Part 1: fundamentals and methodology. Environ Manage 15:205–214

    Article  Google Scholar 

  • Skopek V, Sterbacek Z, Vachal J (1991b) Method of approach to landscape stability. Part 2: eco-optimization of experimental territorial landscape segment in Bohemian forest. Environ Manage 15:215–225

    Article  Google Scholar 

  • Smit B, Brklacich M (1989) Sustainable development and the analysis of rural systems. J Rural Stud 5:405–414

    Article  Google Scholar 

  • Smith P (2004) Soils as carbon sinks – the global context. Soil Use Manage 20:212–218

    Article  Google Scholar 

  • Smith P, Powlson DS (2003) Sustainability of soil management practices – a global perspective. In: Abbott LK, Murphy DV (eds) Soil biological fertility – a key to sustainable land use in agriculture. Kluwer, Dordrecht, pp 241–254

    Google Scholar 

  • Smith P, Powlson DS, Glendining MJ (1996) Establishing a European soil organic matter network (SOMNET). In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing, long-term datasets., vol I, NATO ASI Series. Springer, Berlin, pp 81–98

    Google Scholar 

  • Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Change Biol 3:67–79

    Article  Google Scholar 

  • Smith P, Powlson DS, Smith JU, Falloon PD, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Glob Change Biol 6:525–539

    Article  Google Scholar 

  • Smith P, Falloon PD, Smith JU, Powlson DS (2001) Soil organic matter network (SOMNET). In: Model and experimental metadata, GCTE Report 7, 2nd edn. GCTE Focus 3 Office, Wallingford

    Google Scholar 

  • Smith P, Falloon PD, Körschens M, Shevtsova LK, Franko U, Romanenkov V, Coleman K, Rodionova V, Smith JU, Schramm G (2002) EuroSOMNET – a European database of long-term experiments on soil organic matter: the WWW metadatabase. J Agric Sci Cambridge 138:123–134

    Google Scholar 

  • Smith DR, Moore PA, Miles DM, Haggard EE, Daniel TC (2004) Decreasing phosphorus runoff losses from land-applied poultry litter with dietary modifications and Alum Addition.J Environ Qual 33:2210–2216

    Article  CAS  PubMed  Google Scholar 

  • Smith JU, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell M, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Change Biol 11:2141–2152

    Article  Google Scholar 

  • Smith P, Chapman SJ, Scott WA, Black HIJ, Wattenbach M, Milne R (2007) Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Glob Change Biol 13:2605–2609

    Article  Google Scholar 

  • Snowdon AJ, Cliver OD, Converse CJ (1989) Land disposal of mixed human and animal wastes: a review. Waste Manage Res 7:121–134

    CAS  Google Scholar 

  • Sojka RE, Upchurch DR (1999) Reservations regarding the soil quality concept. Soil Sci Soc Am J 63:1039–1054

    Article  CAS  Google Scholar 

  • Solé RV, Alonso D, Saldana J (2004) Habitat fragmentation and biodiversity collapse in neutral communities. Ecol Complex 1:65–75

    Article  Google Scholar 

  • Song Y, Liu L, Yan NP, Ca OT (2005) A review of soil erodibility in water and wind erosion research. J Geogr Sci 15:167–176

    Google Scholar 

  • Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manage 20:19–23

    Article  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 97–119

    Google Scholar 

  • Steiner K, Herweg k, Dumanski J (2000) Practical and cost-effective indicators and procedures for monitoring the impacts of rural development projects on land quality and sustainable land management. Agric Ecosyst Environ 81:147–154

    Article  Google Scholar 

  • Sterk B, Leeuwis C, Van Ittersum MK (2009) Land use models in complex societal problem solving: plug and play or networking? Environ Model Softw 24:165–172

    Article  Google Scholar 

  • Stott T, Mount N (2004) Plantation forestry impacts on sediment yields and downstream channel dynamics in the UK: a review. Prog Phys Geogr 28:197–240

    Article  Google Scholar 

  • Stroosnijder L, Mansinho MI, Palese AM (2008) OLIVERO: the project analysing the future of olive production systems on sloping land in the Mediterranean basin. J Environ Sci 89:75–85

    Google Scholar 

  • Sullivan A, Ternan JL, Williams AG (2004) Land use change and hydrological response in the Camel catchment, Cornwall. Appl Geogr 24:119–137

    Article  Google Scholar 

  • Sveistrup TE, Haraldsen TK, Langohr R, Marcelino V, Kvaerner J (2005) Impact of land use and seasonal freezing on morphological and physical properties of silty Norwegian soils. Soil Till Res 81:39–56

    Article  Google Scholar 

  • Swart R, Robinson J, Cohen S (2003) Climate change and sustainable development: expanding the options. Climate Policy 3:S19–S40

    Article  Google Scholar 

  • Swift MJ (1999) Towards the second paradigm: integrated biological management of soil. In: Siqueira JO, Moreira FMS, Lopes AS, Guiherme LRG, Faquin V, Furtani NAE, Cavalho JG (eds) Inter-relacao fertilidade, biologia do solo e nutricao de plantas. UFLA, Brazil, pp 11–24

    Google Scholar 

  • Tait J, Morris D (2000) Sustainable development of agricultural systems: competing objectives and critical limits. Futures 32:247–260

    Article  Google Scholar 

  • Tan RR (2005) Rule-based life cycle impact assessment using modified rough set induction methodology. Environ Model Softw 20:509–513

    Article  Google Scholar 

  • Tefera B, Sterk G (2010) Land management, erosion problems and soil and water conservation in Fincha’a watershed, western Ethiopia, Land Use Policy 27:1027–1037

    Article  Google Scholar 

  • Tenge AJ, De Graaff J, Hella JP (2004) Social and economic factors affecting the adoption of soil and water conservation in West Usambara Highland, Tanzania. Land Degrad Dev 15:99–114

    Article  Google Scholar 

  • Thomson JL, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306

    Article  Google Scholar 

  • Tiessen H, Cuevas E, Chacon P (1994) The role of soil organic matter in sustaining soil fertility. Nature 371:783–785

    Article  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:282–284

    Article  Google Scholar 

  • Tisdell C (1988) Sustainable development: differing perspectives of ecologists and economists, and relevance to LDCs. World Dev 16:373–384

    Article  Google Scholar 

  • Tolon BA, Botta GF, Bravo LX, Tourn M, Melcon BF, Vazquez J, Rivero D, Linares P, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil Till Res 107:49–56

    Article  Google Scholar 

  • Tomich TP, Thomas DE, Van Noordwijk M (2004) Environmental services and land use change in Southeast Asia: from recognition to regulation or reward? Agric Ecosyst Environ 104:229–244

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner HBL, Moss RH, Skole DL (1993) Relating land use and global land-cover change: a proposal for an IGBP-HDP Core Project. IGBP Report No. 24. HDP Report No.5. International Geosphere-Biosphere Programme, Stockholm

    Google Scholar 

  • UNCCD-United Nations (1994) Convention to combat desertification. Available online at: http://www.unccd.int

  • UNCED (1992) Agenda 21: programme of action for sustainable development. The Rio declaration on environment and development, statement of principles. Final text of agreement negotiated by governments at the United Nations Conference on Environment and Development. Rio de Janeiro, Brazil, UNDP, New York, pp 3.14

    Google Scholar 

  • UNFCCC (1992) United Nations framework convention on climate change. UNFCCC, Bonn

    Google Scholar 

  • UNFCCC (1998) Kyoto protocol to the United Nations framework convention on climate change. UNFCCC. Available online at http://unfccc.int/resource/docs/convkp/kpeng.pdf

  • UNSO/UNDP (1997) Office to combat desertification and drought. Aridity zones and dryland populations: an assessment of population levels in the world’s drylands. New York, USA

    Google Scholar 

  • Upadhyay TP, Solberg B, Sankhayan PL (2006) Use of models to analyze land-use changes forest/soil degradation and carbon sequestration with special reference to Himalayan region: a review and analysis. Forest Pol Econ 9:349–371

    Article  Google Scholar 

  • Uri ND (2000) Perceptions on the use of no-till farming in production agriculture in the United States: an analysis of survey results. Agric Ecosyst Environ 77:263–266

    Article  Google Scholar 

  • Uri ND, Atwood JD, Sanabria J (1998) The environmental benefits and costs of conservation tillage. Sci Total Environ 216:13–32

    Article  CAS  Google Scholar 

  • Van Beek LPH, Van Asch THWJ (2004) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazards 31:289–304

    Article  Google Scholar 

  • Van Elsen T (2000) Species diversity as a task for organic agriculture in Europe. Agric Ecosyst Environ 77:101–109

    Article  Google Scholar 

  • Van Paassen A, Roetter RP, Van Keulen H, Hoanh CT (2007) Can computer models stimulate learning about sustainable land use? Experience with LUPAS in the humid (sub-) tropics of Asia. Agric Syst 94:874–887

    Article  Google Scholar 

  • Van Rossum F, de Sousa SC, Triest L (2004) Genetic consequences of habitat fragmentation in an agricultural landscape on the common Primula veils, and comparison with its rare congener, P. vulgaris. Conserv Genet 5:231–245

    Article  Google Scholar 

  • Van Wesemael B, Cammeraat E, Mulligan M, Burke S (2003) The impact of soil properties and topography on drought vulnerability of rainfed cropping systems in southern Spain. Agric Ecosyst Environ 94:1–15

    Article  Google Scholar 

  • Vanacker V, Govers G, Barros S, Poessen J, Deckers J (2003) The effect of short-term socio-economic and demographic change on land use dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landscape Ecol 18:1–15

    Article  Google Scholar 

  • Velázquez A, Durán E, Ramírez I, Mas J, Ramírez G, Bocco G, Palacio JL (2003) Land use-cover change processes in highly biodiverse areas: the case of Oaxaca, Mexico. Global Environ Chang 13:175–184

    Article  Google Scholar 

  • Verburg PH (2006) Simulating feedbacks in land use and land cover change models. Landscape Ecol 21:1171–1183

    Article  Google Scholar 

  • Verburg PH, Veldkamp A, Willemen L, Overmars KP, Castella JC (2004) Landscape level analysis of the spatial and temporal complexity of land-use change. In: De Fries RS, Asner GP, Houghton RA (eds) Ecosystems and land use, vol 153, Geophysical monograph series. American Geophysical Union, Washington DC, pp 217–230

    Google Scholar 

  • Verburg PH, van de Steeg J, Veldkamp A, Willemen L (2009) From land cover change to land function dynamics: a major challenge to improve land characterization. J Environ Manage 90:1327–1335

    Article  PubMed  Google Scholar 

  • Vink APA (1975) Land use in advancing agriculture. Springer, New York

    Google Scholar 

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Change Biol 8:519–530

    Article  Google Scholar 

  • Wagendorp T, Gulinck H, Coppin P, Muys B (2006) Land use impact evaluation in life cycle assessment based on ecosystem thermodynamics. Energy 31:112–125

    Article  Google Scholar 

  • Wagger MG, Mengel DB (1988) The role of nonleguminous cover crops in the efficient use of water and nitrogen. In: Hargrove WL (ed) Cropping strategies for efficient use of water and nitrogen, Special publication No. 51. American Society of Agronomy, Madison, pp 115–127

    Google Scholar 

  • Wang YL (1993) Regional agriculture and landscape ecology. In: Regional Science Association of China (ed) Regional sciences for development papers and abstracts of international conference on regional science at Beijing. The Ocean, Beijing, pp 276–282

    Google Scholar 

  • Wang YL, Yang XJ (1999) The research on sustainable tourism development in the overall planning of scenic resort. Res Sci 21:37–43

    CAS  Google Scholar 

  • Wang J, Fua B, Qiuc Y, Chen L (2003) Analysis on soil nutrient characteristics for sustainable land use in Danangou catchment of the Loess Plateau, China. Catena 54:17–29

    Article  CAS  Google Scholar 

  • Wardle DA, Yeates GW, Barker GM, Bellingham PJ, Bonner KI, Williamson WM (2003) Island biology and ecosystem functioning in epiphytic soil communities. Science 301:1717–1720

    Article  CAS  PubMed  Google Scholar 

  • Warkentin BP, Fletcher HF (1977) Soil quality for intensive agriculture. Intensive Agriculture Society of Science, Soil and Manure. Proceedings of the International Seminar on Soil Environment and Fertilizer Management. National Institute of Agricultural Science, Tokyo, pp 594–598

    Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change, and forestry. A special report of the intergovernmental panel on climatic change. Cambridge University Press, Cambridge

    Google Scholar 

  • WCED (1987) World Commission on Environment and Development. Our common future. WCED. Oxford University Press, Oxford

    Google Scholar 

  • WCS (1980) World conservation strategy. World conservation strategy: living resource conservation for sustainable development. IUCN-UNEP-WWF. FAO and UNESCO (eds) Rome, Italy, p 54

    Google Scholar 

  • Weijtmans K, Jongejans E, Van Ruijven J (2009) Sod cutting and soil biota effects on seedling performance. Acta Oecologica 35:651–656

    Article  Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC, Boca Raton, pp 1–44

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • White R, Engelen G (2000) High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Comput Environ Urban Syst 24:383–400

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Nat Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  Google Scholar 

  • Wiggering H, Dalchow C, Glemnitz M, Helming K, Müller K, Schultz A, Stachow U, Zander P (2006) Indicators for multifunctional land use – Linking socio-economic requirements with landscape potentials. Ecol Indic 6:238–249

    Article  Google Scholar 

  • Wilbanks JT (2003) Integrating climate change and sustainable development in a place-based context. Climate Policy 3:S147–S154

    Article  Google Scholar 

  • Williams MA, Shaw G (2009) Future play: tourism, recreation and land use. Land Use Policy 26:326–335

    Article  Google Scholar 

  • Williams A, Xing BS, Veneman P (2005) Effect of cultivation on soil organic matter and aggregate stability. Pedosphere 15:255–262

    Google Scholar 

  • Wilson DJ, Western AW, Grayson RB (2005) A terrain and data-based method for generating the spatial distribution of soil moisture. Adv Water Resour 28:43–54

    Article  Google Scholar 

  • Wittmus HD, Triplett GB Jr, Greb BW (1973) Concepts of conservation tillage systems using surface mulches, in Conservation Tillage. Soil Conservation Society of America, Ankeny, pp 5–12

    Google Scholar 

  • Wood S, Sebastian K, Scherr SJ (2000) Pilot analysis of global ecosystems: agroecosystems. International Food Policy Research Institute and World Resources Institute, Washington DC, Available online at http://www.ifpri.org/pubs/books/page/agroeco.pdf

  • Wood R, Lenzen M, Dey C, Lundie S (2006) A comparative study of some environmental impacts of conventional and organic farming in Australia. Agric Syst 89:324–348

    Article  Google Scholar 

  • WSSD (2002) World Summit on Sustainable Development. United Nations Johannesburg Summit. Available online: www.un.org/jsummit

  • Xiloyannis C, Martínez RA, Kosmas C, Favia M (2008) Semi-intensive olive orchards on sloping land: requiring good land husbandry for future development. J Environ Sci 89:110–119

    Google Scholar 

  • Yeo A (1999) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78:159–174

    Article  CAS  Google Scholar 

  • Yin Y, Pierce JT (1993) Integrated resource assessment and sustainable land use. Environ Manage 17:319–327

    Article  Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE (2006) Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130:47–65

    Article  CAS  Google Scholar 

  • Young A (1987) Soil productivity, soil conservation and land evaluation. Agroforest Syst 5:277–291

    Article  Google Scholar 

  • Youngberg EG, Parr JG, Papendick RI (1984) Potential benefits of organic farming practices for wildlife and natural resources. Trans North Am Wildl Nat Resour 49:141–153

    Google Scholar 

  • Zalidis G, Stamatiadis S, Takavakoglou V, Eskridge K, Misopolinos N (2002) Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric Ecosyst Environ 88:137–146

    Article  Google Scholar 

  • Zavaleta ES, Hulvey KB (2004) Realistic species losses disproportionately reduce grassland resistance to biological invaders. Science 306:1175–1177

    Article  CAS  PubMed  Google Scholar 

  • Zebisch M, Wechsung F, Kenneweg H (2004) Landscape response functions for biodiversity: assessing the impact of land-use changes at the county level. Landscape Urban Plan 67:157–172

    Article  Google Scholar 

  • Zentner RP, Lafond GP, Derksen DA, Nagy CN, Wall DD, May WE (2004) Effects of tillage method and crop rotation on non-renewable energy use efficiency for a thin Black Chernozem in the Canadian Prairies. Soil Till Res 77:125–136

    Article  Google Scholar 

  • Zhang B, Zhang Y, Chen D, White RE, Li Y (2004) A quantitative evaluation system of soil productivity for intensive agriculture in China. Geoderma 123:319–331

    Article  Google Scholar 

  • Zhou Y, Shao HB (2008) The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe. CR Biol 331:321–328

    Article  Google Scholar 

Download references

Acknowledgements

Partly of the research work leading to this publication was sponsored by the following research project “Hydrological and erosive processes, and biomass assessment and organic carbon sequestering under different land uses in the Mediterranean agrarian watershed El Salado, Lanjaron” (SE Spain) (RTA2007-00008-00-00) granted by INIA, Spain, and cofinanced by FEDER funds (European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Hugo Durán Zuazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zuazo, V.H.D., Pleguezuelo, C.R.R., Flanagan, D., Tejero, I.G., Fernández, J.L.M. (2011). Sustainable Land Use and Agricultural Soil. In: Lichtfouse, E. (eds) Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation. Sustainable Agriculture Reviews, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0186-1_5

Download citation

Publish with us

Policies and ethics