Skip to main content

Investigations of the In Vivo Requirements of Transient Receptor Potential Ion Channels Using Frog and Zebrafish Model Systems

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Transient Receptor Potential (TRP) channels are cation channels that serve as cellular sensors on the plasma membrane, and have other less-well defined roles in intracellular compartments. The first TRP channel was identified upon molecular characterization of a fly mutant with abnormal photoreceptor function. More than 20 TRP channels have since been identified in vertebrates and invertebrate model systems, and these are divided into subfamilies based on structural similarities. The biophysical properties of TRP channels have primarily been explored in tissue culture models. The in vivo requirements for TRPs have been studied in invertebrate models like worm and flies, and also in vertebrate models, primarily mice and rats. Frog and zebrafish model systems offer certain experimental advantages relative to mammalian systems, and here a selection of papers which capitalize on these advantages to explore vertebrate TRP channel biology are reviewed. For instance, frog oocytes are useful for biochemistry and for electrophysiology, and these features were exploited in the identifcation TRPC1 as a candidate vertebrate mechanoreceptor. Also, the spinal neurons from frog embryos can be readily grown in culture. This feature was used to establish a role for TRPC1 in axon pathfinding in these neurons, and to explore how TRPC1 activity is regulated in this context. Zebrafish embryos are transparent making them well suited for in vivo imaging studies. This quality was exploited in a study in which the trpc2 gene promoter was used to label and trace the axon pathway of a subset of olfactory sensory neurons. Another experimental advantage of zebrafish is the speed and low cost of manipulating gene expression in embryos. Using these methods, it has been shown that TRPN1 is necessary for mechanosensation in zebrafish hair cells. Frogs and fish genomes have been mined to make inferences regarding evolutionary diversification of the thermosensitive TRP channels. Finally, TRPM7 is required for early morphogenesis in mice but not in fish; the reason for this difference is unclear, but it has caused zebrafish to be favored for exploration of TRPM7’s role in later events in embryogenesis. The special experimental attributes of frogs and zebrafish suggest that these animals will continue to play an important role as models in future explorations of TRP channel biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224: 285–287

    Article  CAS  PubMed  Google Scholar 

  2. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313–1323

    Article  CAS  PubMed  Google Scholar 

  3. Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8: 643–651

    Article  CAS  PubMed  Google Scholar 

  4. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76: 387–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1: 85–92

    Article  CAS  PubMed  Google Scholar 

  6. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411: 590–595

    Article  CAS  PubMed  Google Scholar 

  7. Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101: 66–76

    Article  CAS  PubMed  Google Scholar 

  8. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87: 165–217

    Article  CAS  PubMed  Google Scholar 

  9. Montell C (2003) The venerable inveterate invertebrate TRP channels. Cell Calcium 33: 409–417

    Article  CAS  PubMed  Google Scholar 

  10. Grunwald DJ, Streisinger G (1992) Induction of mutations in the zebrafish with ultraviolet light. Genet Res 59: 93–101

    Article  CAS  PubMed  Google Scholar 

  11. Grunwald DJ, Streisinger G (1992) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 59: 103–116

    Article  CAS  PubMed  Google Scholar 

  12. Grunwald DJ, Kimmel CB, Westerfield M, Walker C, Streisinger G (1988) A neural degeneration mutation that spares primary neurons in the zebrafish. Dev Biol 126: 115–128

    Article  CAS  PubMed  Google Scholar 

  13. Streisinger G, Singer F, Walker C, Knauber D, Dower N (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112: 311–319

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Nawrocki L, BreMiller R, Streisinger G, Kaplan M (1985) Larval and adult visual pigments of the zebrafish, Brachydanio rerio. Vision Res 25: 1569–1576

    Article  CAS  PubMed  Google Scholar 

  15. Walker C, Streisinger G (1983) Induction of Mutations by gamma-Rays in Pregonial Germ Cells of Zebrafish Embryos. Genetics 103: 125–136

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Chakrabarti S, Streisinger G, Singer F, Walker C (1983) Frequency of gamma-Ray Induced Specific Locus and Recessive Lethal Mutations in Mature Germ Cells of the Zebrafish, BRACHYDANIO RERIO. Genetics 103: 109–123

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Postlethwait JH, Johnson SL, Midson CN, Talbot WS, Gates M, Ballinger EW, Africa D, Andrews R, Carl T, Eisen JS et al (1994) A genetic linkage map for the zebrafish. Science 264: 699–703

    Article  CAS  PubMed  Google Scholar 

  18. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123: 1–36

    CAS  PubMed  Google Scholar 

  19. Moreno RL, Ribera AB (2009) Zebrafish motor neuron subtypes differ electrically prior to axonal outgrowth. J Neurophysiol 102: 2477–2484

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fetcho JR, Cox KJ (1998) O’Malley DM: Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate. Histochem J 30: 153–167

    Article  CAS  PubMed  Google Scholar 

  21. Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13: 513–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Liu B, Yao J, Wang Y, Li H, Qin F (2009) Proton inhibition of unitary currents of vanilloid receptors. J Gen Physiol 134: 243–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sherkheli MA, Benecke H, Doerner JF, Kletke O, Vogt-Eisele AK, Gisselmann G, Hatt H (2009) Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels. J Pharm Sci 12: 116–128

    CAS  Google Scholar 

  24. Na T, Zhang W, Jiang Y, Liang Y, Ma HP, Warnock DG, Peng JB (2009) The A563T variation of the renal epithelial calcium channel TRPV5 among African Americans enhances calcium influx. Am J Physiol Renal Physiol 296: F1042–F1051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hu H, Grandl J, Bandell M, Petrus M, Patapoutian A (2009) Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4. Proc Natl Acad Sci USA 106: 1626–1631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wegierski T, Steffl D, Kopp C, Tauber R, Buchholz B, Nitschke R, Kuehn EW, Walz G, Kottgen M (2009) TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J 28: 490–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284: 1570–1582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7: 179–185

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Hamill OP (2000) Calcium-, voltage- and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol 523(Pt 1): 83–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM (2009) Roles of transient receptor potential channels in pain. Brain Res Rev 60: 2–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8: 730–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434: 898–904

    Article  CAS  PubMed  Google Scholar 

  33. Shim S, Yuan JP, Kim JY, Zeng W, Huang G, Milshteyn A, Kern D, Muallem S, Ming GL, Worley PF (2009) Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron 64: 471–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114: 777–789

    Article  CAS  PubMed  Google Scholar 

  35. Sato Y, Miyasaka N, Yoshihara Y (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25: 4889–4897

    Article  CAS  PubMed  Google Scholar 

  36. Morita Y, Finger TE (1998) Differential projections of ciliated and microvillous olfactory receptor cells in the catfish, Ictalurus punctatus. J Comp Neurol 398: 539–550

    Article  CAS  PubMed  Google Scholar 

  37. Hansen A, Rolen SH, Anderson K, Morita Y, Caprio J, Finger TE (2003) Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23: 9328–9339

    CAS  PubMed  Google Scholar 

  38. Sidi S, Friedrich RW, Nicolson T, Nomp C (2003) TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301: 96–99

    Article  CAS  PubMed  Google Scholar 

  39. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287: 2229–2234

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Jones S, Brody K, Costa M, Brookes SJ (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol 286: G983–G991

    Article  CAS  PubMed  Google Scholar 

  41. Seiler C, Nicolson T (1999) Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants. J Neurobiol 41: 424–434

    Article  CAS  PubMed  Google Scholar 

  42. Gopfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9: 999–1000

    Article  PubMed  Google Scholar 

  43. Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Grunder S (2005) Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci USA 102: 12572–12577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819–829

    Article  CAS  PubMed  Google Scholar 

  45. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260–265

    Article  CAS  PubMed  Google Scholar 

  46. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41: 849–857

    Article  CAS  PubMed  Google Scholar 

  47. Prober DA, Zimmerman S, Myers BR, McDermott BM Jr, Kim SH, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schier AF (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 28: 10102–10110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7: 454–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18: R880–R889

    Article  CAS  PubMed  Google Scholar 

  50. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108: 421–430

    Article  CAS  PubMed  Google Scholar 

  51. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35: 307–318

    Article  CAS  PubMed  Google Scholar 

  52. McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370: 64–74

    Article  CAS  PubMed  Google Scholar 

  53. McPartland JM, Glass M, Matias I, Norris RW, Kilpatrick CW (2007) A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio). Mol Genet Genomics 277: 555–570

    Article  CAS  PubMed  Google Scholar 

  54. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4–/– mice. Nat Cell Biol 3: 121–127

    Article  CAS  PubMed  Google Scholar 

  55. Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 96: 1282–1290

    Article  CAS  PubMed  Google Scholar 

  56. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. Circ Res 91: 70–76

    Article  CAS  PubMed  Google Scholar 

  57. Yu PC, Gu SY, Bu JW, Du JL (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106: 1221–1232

    Article  CAS  PubMed  Google Scholar 

  58. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804

    Article  CAS  PubMed  Google Scholar 

  59. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37: 739–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6–/– mice. Mol Cell Biol 25: 6980–6989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103: 19093–19098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Moller CC, Mangos S, Drummond IA, Reiser J (2008) Expression of trpC1 and trpC6 orthologs in zebrafish. Gene Expr Patterns 8: 291–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12: 938–943

    Article  CAS  PubMed  Google Scholar 

  64. Wu G, Markowitz GS, Li L, D’Agati VD, Factor SM, Geng L, Tibara S, Tuchman J, Cai Y, Park JH, van Adelsberg J, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (2000) Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24: 75–78

    Article  CAS  PubMed  Google Scholar 

  65. Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131: 4085–4093

    Article  CAS  PubMed  Google Scholar 

  66. Bisgrove BW, Snarr BS, Emrazian A, Yost HJ (2005) Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer’s vesicle are required for specification of the zebrafish left-right axis. Dev Biol 287: 274–288

    Article  CAS  PubMed  Google Scholar 

  67. Kobori T, Smith GD, Sandford R, Edwardson JM (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284: 35507–35513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Obara T, Mangos S, Liu Y, Zhao J, Wiessner S, Kramer-Zucker AG, Olale F, Schier AF, Drummond IA (2006) Polycystin-2 immunolocalization and function in zebrafish. J Am Soc Nephrol 17: 2706–2718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132: 1907–1921

    Article  CAS  PubMed  Google Scholar 

  70. Deltas C, Papagregoriou G (2010) Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 134: 569–582

    CAS  PubMed  Google Scholar 

  71. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182: 437–447

    Article  PubMed Central  PubMed  Google Scholar 

  72. Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M (2007) TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. Am J Physiol Renal Physiol 292: F667–F673

    Article  CAS  PubMed  Google Scholar 

  73. Mangos S, Liu Y, Drummond IA (2007) Dynamic expression of the osmosensory channel trpv4 in multiple developing organs in zebrafish. Gene Expr Patterns 7: 480–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7: 766–772

    Article  CAS  PubMed  Google Scholar 

  75. Kimura Y, Nakazawa M, Yamada M (1998) Cloning and characterization of three isoforms of OS-9 cDNA and expression of the OS-9 gene in various human tumor cell lines. J Biochem 123: 876–882

    Article  CAS  PubMed  Google Scholar 

  76. Cormier JH, Pearse BR, Hebert DN (2005) Yos9p: a sweet-toothed bouncer of the secretory pathway. Mol Cell 19: 717–719

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, Fu X, Gaiser S, Kottgen M, Kramer-Zucker A, Walz G, Wegierski T (2007) OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem 282: 36561–36570

    Article  CAS  PubMed  Google Scholar 

  78. Saito S, Shingai R (2006) Evolution of thermoTRP ion channel homologs in vertebrates. Physiol Genomics 27: 219–230

    Article  CAS  PubMed  Google Scholar 

  79. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322: 756–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31: 171–174

    Article  CAS  PubMed  Google Scholar 

  81. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga RM, Beuchle D, Vogelsang L, Nusslein-Volhard C (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123: 369–389

    CAS  PubMed  Google Scholar 

  82. McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu MY, Cornell RA (2007) Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 127: 2020–2030

    Article  CAS  PubMed  Google Scholar 

  83. Arduini BL, Henion PD (2004) Melanophore sublineage-specific requirement for zebrafish touchtone during neural crest development. Mech Dev 121: 1353–1364

    Article  CAS  PubMed  Google Scholar 

  84. Cornell RA, Yemm E, Bonde G, Li W, d’Alencon C, Wegman L, Eisen J, Zahs A (2004) Touchtone promotes survival of embryonic melanophores in zebrafish. Mech Dev 121: 1365–1376

    Article  CAS  PubMed  Google Scholar 

  85. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM (2005) Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15: 667–671

    Article  CAS  PubMed  Google Scholar 

  86. Greenwood MP, Flik G, Wagner GF, Balment RJ (2009) The corpuscles of Stannius, calcium-sensing receptor, and stanniocalcin: responses to calcimimetics and physiological challenges. Endocrinology 150: 3002–3010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52: 485–496

    Article  CAS  PubMed  Google Scholar 

  88. Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98: 245–253

    Article  CAS  PubMed  Google Scholar 

  89. Ekker SC (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5: 121–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447: 1007–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Sachidanandan C, Yeh JR, Peterson QP, Peterson RT (2008) Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS One 3: e1947

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Christine Blaumuller for editorial comments. Work on TRPM7 in the Cornell laboratory is supported by NIH grants GM067841 and 5P30ES005605 (pilot grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Cornell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cornell, R.A. (2011). Investigations of the In Vivo Requirements of Transient Receptor Potential Ion Channels Using Frog and Zebrafish Model Systems. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_19

Download citation

Publish with us

Policies and ethics