Skip to main content

In-Situ Ocean Observing System

  • Chapter
  • First Online:
Operational Oceanography in the 21st Century

Abstract

Ocean Observing systems consist of in-situ and satellite based technique to detect, track, and predict changes in physical, chemical, geological and biological processes. In-situ observing systems have both Eulerian (based on fixed locations) and Lagrangian (whose location varies with time) systems. The elements of in-situ observing system in terms of their principle, capability to observe the ocean, technology and some of the applications pertaining to physical variables are described. A brief status on Indian Ocean Observing system (IndOOS) is also described. The strengths and weaknesses of each platform and the need for integrating different observational platforms/sensors are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balmaseda M, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Lett 36, L01701. doi:10.1029/2008GL035561

    Article  Google Scholar 

  • Barrick DE, Lipa BJ, Crissman RD (1985) Mapping surface currents with CODAR. Sea Technol 26(10):43–47

    Google Scholar 

  • Cai W, Hendon H, Meyers G (2005) Indian Ocean dipole-like variability in the CSIRO Mark 3 coupled climate model. J Climate 18:1449–1468

    Article  Google Scholar 

  • Castelao R, Glenn S, Schofield O, Chant R, Wilkin J, Kohut J (2008) Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight from glider observations. Geophys Res Lett 35, L03617. doi:10.1029/2007GL032335

    Article  Google Scholar 

  • Cazenave A, Dominh K, Guinehut S (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65(1–2):83–88

    Article  Google Scholar 

  • Chang P, Ji L, Saravanan R (2001) A hybrid coupled model study of tropical Atlantic variability. J Climate 14:361–390

    Article  Google Scholar 

  • Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea level rise over the 1950 to 2000 period. J Climate 17:2609–2625

    Article  Google Scholar 

  • Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30(7):1399. doi:10.1029/2002GL016673

    Article  Google Scholar 

  • Clark C, Wilson S (2009) An overview of global observing systems relevant to GODAE. Oceanography 22(3):22–33

    Article  Google Scholar 

  • Davis R, Eriksen C, Jones C (2002) Autonomous buoyancy-driven underwater gliders. In: Griffiths G (ed) The technology and applications of autonomous underwater vehicles. Taylor and Francis, London

    Google Scholar 

  • Davis R, Ohman MD, Rudnick DL, Sherman J, Hodges B (2008) Glider surveillance of physics and biology in the southern California current system. Limnol Oceanogr 53(5, Part 2):2151–2168

    Article  Google Scholar 

  • de GrootHedlin CD (2005) Estimation of the rupture length and velocity of the Great Sumatra earthquake of December 26, 2004 using hydroacoustic signals. Geophys Res Lett 32, L11303. doi:10.1029/2005GL022695

    Article  Google Scholar 

  • Dickey TD (2003) Emerging ocean observations for interdisciplinary data assimilation systems. J Marine Syst 40–41:5–48

    Article  Google Scholar 

  • Dohan K et al (2009) Measuring the global ocean surface circulation with satellite and in-situ observations. Community White Paper, Oceanobs’09

    Google Scholar 

  • Dushaw BD et al (2001) Observing the ocean in the 2000’s: a strategy for the role of acoustic tomography in ocean climate observation. In: Koblinsky CJ, Smith NR (eds) Observing the oceans in the 21st century. GODAE Project Office and Bureau of Meteorology, Melbourne, pp 391–418

    Google Scholar 

  • Dushaw BD (2003) Acoustic thermometry in the North Pacific, CLIVAR Exchanges No. 26, March 2003. International CLIVAR Project Office, Southampton, UK

    Google Scholar 

  • Dushaw B et al (2009) A global ocean acoustic observing network. Community White Paper, OceanObs’09

    Google Scholar 

  • Eriksen CC, Rhines PB (2008) Convective to gyre-scale dynamics: seaglider campaigns in the Labrador Sea 2003–2005. In: Dickson R, Meincke J, Rhines P (eds) Arctic-subarctic ocean fluxes: defining the role of the northern seas in climate. Springer, Dordrecht (Chapter 25)

    Google Scholar 

  • Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep Sea Res Part II: Top Stud Oceanogr 50:2263–2284

    Article  Google Scholar 

  • Freeland H et al (2009) Argo—a decade of progress. Community White Paper, OceanObs’09

    Google Scholar 

  • Glenn S, Jones C, Twardowski M, Bowers L, Kerfoot J, Kohut J, Webb D, Schofield O (2008) Glider observations of sediment resuspension in a Middle Atlantic Bight fall transition storm. Limnol Oceanogr 53(5, Part 2):2180–2196

    Article  Google Scholar 

  • Goni G et al (2009) The ship of opportunity program. Community White Paper, OceanObs’09

    Google Scholar 

  • Gopalakrishnan G (2008) Surface current observations using high frequency radar and its assimilation into the New York harbor observing and prediction system. PhD Thesis, Stevens Institute of Technology, Castle Point on the Hudson, Hoboken, NJ 07030

    Google Scholar 

  • Gulev SK, Jung T, Ruprecht E (2007) Estimation of the impact of sampling errors in the VOS observations on air-sea fluxes. Parts: I and II. J Climate 20:279–301, 302–315

    Article  Google Scholar 

  • Gurgel KW, Essen HH, Kingsley SP (1999) High-frequency radars: physical limitations and recent developments. Coast Eng 37(3–4):201–218

    Article  Google Scholar 

  • Hase H, Masumoto Y, Kuroda Y, Mizuno K (2008) Semiannual variability in temperature and salinity observed by Triangle Trans-Ocean Buoy Network (TRITON) buoys in the eastern tropical Indian Ocean. J Geophys Res 113, C01016. doi:10.1029/2006JC004026

    Article  Google Scholar 

  • Hood M et al (2009) Ship-based repeat hydrography: a strategy for a sustained global program. Community White Paper, OceanObs’09

    Google Scholar 

  • Horii T, Hase H, Ueki I, Masumoto Y (2008) Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophys Res Lett 35, L03607. doi:10.1029/2007GL032464

    Article  Google Scholar 

  • IOC, Manual on Sea Level Measurement and Interpretation (2006) Volume IV: an update to 2006, JCOMM technical report No. 31, WMO/TD. No. 1339

    Google Scholar 

  • International CLIVAR Project Office (2006) Understanding the role of the Indian Ocean in the climate system—implementation plan for sustained observations. ICPO Publication Series 100; GOOS report No. 152; WCRP informal report No. 5/2006, International CLIVAR Project Office, South Hampton, UK, p 60, 30 figures

    Google Scholar 

  • Kent EC, Berry DI (2008) Assessment of the Marine Observing System (ASMOS): final report, NOCS research and consultancy report No. 32, p 55 (available electronically from the authors)

    Google Scholar 

  • Kent E et al (2009) The Voluntary Observing Ship (VOS) scheme. Community White Paper, OceanObs’09

    Google Scholar 

  • Koblinsky C, Smith N (eds) (2001) Ocean observations for the 21st century. GODAE Office/BoM, Melbourne

    Google Scholar 

  • Kohut J, Roarty H, Licthenwalner S, Glenn S, Barrick D, Lipa B, Allen A (2008) Surface current and wave validation of a nested regional HF radar Network in the Mid-Atlantic Bight, Current Measurement Technology (CMTC). Proceedings of the IEEE/OES 9th working conference on 17–19 March 2008, pp 203–207. doi:10.1109/CCM.2008.4480868

    Google Scholar 

  • Lagerloef GSE, Lukas R, Bonjean F, Gunn JT, Mitchum GT, Bourassa M, Busalacchi AJ (2003) El Niño Tropical Pacific Ocean surface current and temperature evolution in 2002 and outlook for early 2003. Geophys Res Lett 30(10):1514. doi:10.1029/2003GL017096

    Article  Google Scholar 

  • Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, O’Brien J, Rosati A, Schneider E (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14375–14394

    Article  Google Scholar 

  • Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, argo, and GRACE. Geophys Res Lett 36, L04608

    Article  Google Scholar 

  • Masumoto Y, Hase H, Kuroda Y, Matsuura H, Takeuchi K (2005) Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys Res Lett 32, L02607. doi:10.1029/2004GL021896

    Article  Google Scholar 

  • Masumoto Y et al (2009) Observing systems in the Indian Ocean. Community White Paper, OceanObs’09

    Google Scholar 

  • Matthews A, Singhruck P, Heywood K (2007) Deep ocean impact of a Madden-Julian oscillation observed by argo floats. Science 318(5857):1765–1769

    Article  Google Scholar 

  • McPhaden MJ (2004) Evolution of the 2002/03 El Nino. Bull Am Meteorol Soc 85(5):677–695

    Article  Google Scholar 

  • McPhaden MJ (2008) Evolution of the 2006–07 El Niño: the role of intraseasonal to interannual time scale dynamics. Adv Geosci 14:219–230

    Article  Google Scholar 

  • McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33(16), L16702. doi:10.1029/2006GL026786

    Article  Google Scholar 

  • McPhaden MJ et al (2009a) The global tropical moored buoy array. Community White Paper, Oceanobs’09

    Google Scholar 

  • McPhaden MJ et al (2009b) RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90:459–480

    Article  Google Scholar 

  • McPhaden MJ, Foltz GR, Lee T, Murty VSN, Ravichandran M, Vecchi GA, Vialard J, Wiggert JD, Yu L (2009c) Ocean-atmosphere interactions during cyclone Nargis. EOS 90:53–54

    Article  Google Scholar 

  • Maximenko NA, Melnichenko OV, Niiler PP, Sasaki H (2008) Stationary mesoscale jet-like features in the ocean. Geophys Res Lett 35, L08603. doi:10.1029/2008GL033267

    Article  Google Scholar 

  • Merrifield M et al (2009) The global sea level observing system (GLOSS). Community White paper, Oceanobs’09

    Google Scholar 

  • Meyers G (1996) Variation of Indonesian throughflow and the El Niño—southern oscillation. J Geophys Res 101:12255–12263

    Article  Google Scholar 

  • Meyers G, Bailey R, Worby T (1995) Volume transport of Indonesian throughflow. Deep Sea Res Part I Oceanogr Res Pap 42:1163–1174

    Article  Google Scholar 

  • Meyers G, Boscolo R (2006) The Indian Ocean Observing System (IndOOS). CLIVAR Exch 11(4):2–3, International CLIVAR Project Office, Southampton, UK

    Google Scholar 

  • Munk W, Worcester P, Wunsch C (1995) Ocean acoustic tomography. Cambridge University Press, Cambridge. ISBN 0-521-47095-1

    Book  Google Scholar 

  • Murty VSN, Sarma MSS, Suryanarayana A, Sengupta D, Unnikrishnan AS, Fernando V, Almeida A, Khalap S, Sardar A, Somasundar K, Ravichandran M (2006) Indian moorings: deep-sea current meter moorings in the eastern equatorial Indian Ocean. CLIVAR Exch 11(4):5–8, International CLIVAR Project Office, Southampton, UK

    Google Scholar 

  • Nagura M, McPhaden MJ (2008) The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophys Res Lett 35, K23603. doi:10.1029/2008GL035961

    Google Scholar 

  • Nevala A (2005) A glide across the Gulf Stream. WHOI Oceanus, March 2005

    Google Scholar 

  • Niiler PP, Maximenko NA, McWilliams JC (2003) Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys Res Lett 30(22):2164–2167

    Article  Google Scholar 

  • NSF (2001) Ocean sciences at the new millennium. National Science Foundation, Arington

    Google Scholar 

  • Ogata T, Sasaki H, Murty VSN, Sarma MSS, Masumoto Y (2008) Intraseasonal meridional current variability in the eastern equatorial Indian Ocean. J Geophys Res 113, C07037. doi:10.1029/2007JC004331

    Article  Google Scholar 

  • Oke PR, Schiller A (2007) A model-based assessment and design of a tropical Indian Ocean mooring array. J Climate 20:3269

    Article  Google Scholar 

  • Perry MJ, Sackman BS, Eriksen CC, Lee CM (2008) Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast. Limnol Oceanogr 53(5, Part 2):2169–2179

    Article  Google Scholar 

  • Picaut J, Hackert E, Busalacchi AJ, Murtugudde R, Lagerloef GSE (2002) Mechanisms of the 1997–1998 El Nino-La Nina, as inferred from space-based observations. J Geophys Res 107(C5). doi:10.1029/2001JC000850

    Google Scholar 

  • Testor P et al (2009) Gliders as a component of future observing systems. Community White Paper, OceanObs’09

    Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual variability in the subsurface tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res Part 2: Top Stud Oceanogr 49:1549–1572

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2005) Daily high-resolution-blended analyses for sea surface temperature. J Climate 20:5473–5496

    Article  Google Scholar 

  • Rio MH, Hernandez F (2003) High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J Geophys Res 108(C8):3283–3301

    Article  Google Scholar 

  • Riser SC, Nystuen J, Rogers A (2008) Monsoon effects in the Bay of Bengal inferred from profiling float-based measurements of wind speed and rainfall. Limnol Oceanogr 53(5):2080–2093

    Article  Google Scholar 

  • Roemmich D et al (2009) Integrating the ocean observing system: mobile platforms. Community White Paper, OceanObs’09

    Google Scholar 

  • Send U et al (2009) A global boundary current circulation observing network. Community White Paper, OceanObs’09

    Google Scholar 

  • Shenoi SSC, Saji PK, Almeida AM (1999) Near surface circulation and kinetic energy in the tropical Indian Ocean derived from lagrangian drifters. J Mar Res 57:885–907

    Article  Google Scholar 

  • Sengupta D, Bharath Raj GN, Shenoi SSC (2006) Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys Res Lett 33, L22609. doi:10.1029/2006GL027573 1999

    Article  Google Scholar 

  • Sengupta D, Senan R, Murty VSN, Fernando V (2004) A biweekly mode in the equatorial Indian Ocean. J Geophys Res 109, C10003. doi:10.1029/2004JC002329

    Article  Google Scholar 

  • Sybrandy et al (2009) Global drifter programme: barometer drifter design and refrence. DBCP report No. 4, Revision 2.2. Data Buoy Cooperation Panel

    Google Scholar 

  • Terrill E, Otero M, Hazard L, Conlee D, Harlan J, Kohut J, Reuter P, Cook T, Harris T, Lindquist K (2006) Data management and real-time distribution for HF Radar national network. MTS/IEEE Oceans 2006, Boston, Paper 060331–220

    Google Scholar 

  • Trenberth K et al (2009) Atmospheric reanalyses: a major resource for ocean product development and modeling. Community White Paper, OceanObs’09

    Google Scholar 

  • Udaya Bhaskar TVS, Rahman SH, Pavan ID, Ravichandran M, Nayak S (2009) Comparison of AMSR-E and TMI sea surface temperature with Argo near-surface temperature over the Indian Ocean. Int J Remote Sens 30(10):2669–2684

    Article  Google Scholar 

  • Vecchi GA, Harrison MJ (2007) An observing system simulation experiment for the Indian Ocean. J Climate 20:3300–3319

    Article  Google Scholar 

  • Vialard J, Foltz G, McPhaden M, Duvel J-P, de Boyer Montégut C (2008) Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian oscillation in late 2007 and early 2008. Geophys Res Lett 35, L19608. doi:10.1029/2008GL035238

    Article  Google Scholar 

  • Wijffels SE, Meyers G, Godfrey JS (2008) A twenty year average of the Indonesian throughflow: regional currents and the inter-basin exchange. J Phys Oceanogr 38(8):1–14

    Google Scholar 

  • Willis J, Chambers D, Nerem R (2008) Assessing the globally-averaged sea level budget on seasonal to interannual time scales. J Geophys Res 113, C06015. doi:10.1029/2007JC004517

    Article  Google Scholar 

  • Wong APS, Owens WB (2009) An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by Θ-S climatology. Deep Sea Res Part I: Oceanogr Res Pap 56:450–457. doi:10.1016/j.dsr.2008.09.008

    Article  Google Scholar 

  • Woodworth P, Player R (2003) The permanent service for mean sea level: an update to the 21st century. J Coastal Res 19(2):287–285

    Google Scholar 

  • Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20:5889–5911

    Google Scholar 

Download references

Acknowledgements

Most of the work described above is based on the Community White Paper, OceanObs’09. Highest appreciation is placed on record for the excellent compilation by several authors and organization for their Community White Paper, it would have been difficult without these White papers. The encouragement and the facilities provided by the Director, INCOIS is acknowledged. Also acknowledged Wee Cheah, University of Tasmania, Sabastiaan Swart, University of Cape Town and unknown reviewer for critically going through the manuscript to improve it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthalagu Ravichandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ravichandran, M. (2011). In-Situ Ocean Observing System. In: Schiller, A., Brassington, G. (eds) Operational Oceanography in the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0332-2_3

Download citation

Publish with us

Policies and ethics