Skip to main content

Generation of harmonics and sub-harmonics from an internal tide in a uniformly stratified fluid: numerical and laboratory experiments

  • Conference paper
IUTAM Symposium on Turbulence in the Atmosphere and Oceans

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 28))

Abstract

This paper focuses on the internal tide emitted from a continental slope in a uniformly stratified fluid. Results from numerical simulations using the MITgcm and from laboratory experiments performed on the Coriolis platform in Grenoble are compared. Due to their peculiar dispersion relation, internal gravity waves organize into localized beams of energy. We show that the beam structure is well-predicted by the viscous theory of (Hurley and Keady, 1997), assuming that the internal gravity wave field is emitted by a horizontally oscillating cylinder whose radius is the radius of curvature of the topography at the beam emission. The wave beam can bear a sub-harmonic parametric instability whose vertical scale is recovered from resonant interaction theory. Reflection of the wave beam on the bottom leads to the generation of harmonic beams, consisting of free and trapped waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baines, P.G., Fang, X.H.: Internal tide generation at a continental shelf/slope junction: A comparison between theory and a laboratory experiment. Dynamics of Atmospheres and Oceans 9, 297–314 (1985).

    Article  Google Scholar 

  2. Ferrari, R., Wunsch, C: Ocean circulation kinetic energy: reservoirs, sources, and sinks. Ann. Rev. Fluid Mech. 41, 253–282 (2009).

    Article  Google Scholar 

  3. Garrett, C, Kunze, E.: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 57–87, 2007.

    Article  Google Scholar 

  4. Gerkema T., Staquet C., Bouruet-Aubertot, P.: Nonlinear effects in internal tide beams and mixing. Geophysical Research Letters 33, L08604 (2006).

    Article  Google Scholar 

  5. Gerkema T., Staquet C., Bouruet-Aubertot, P.: Nonlinear effects in internal tide beams and mixing. Ocean Modelling 12, 302–318 (2006).

    Article  Google Scholar 

  6. Gostiaux, L, Dauxois, T. Laboratory experiments on the generation of internal tidal beams over steep slopes. Physics Fluids 19(1), 1–4 (2007).

    Google Scholar 

  7. Hasselmann, K: A criterion for nonlinear wave stability. J. Fluid Mech. 30, 737 (1967).

    Article  Google Scholar 

  8. Hibiya, T., Nagasawa, M., Niwa, N.: Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res. 107(C11), 3207 (2002).

    Article  Google Scholar 

  9. Holloway, P.E., Merrifield, M.A.: Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res. 104(C11), 25937–25951 (1999).

    Article  Google Scholar 

  10. Hurley, D.G., Keady, K.: The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solutions. J. Fluid Mech. 351, 11 (1997).

    Google Scholar 

  11. Jachec, S.M., Fringer, O.B., Gerritsen, M.G., Street, R.L.: Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area. Geophys Res. Lett. 33, L12605 (2006).

    Article  Google Scholar 

  12. Khatiwala, S.: Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep Sea Research, 50, 3–21 (2003).

    Article  Google Scholar 

  13. Lamb, K.B.: Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett. 31, doi:10.1029/2003GL01939 (2004).

    Google Scholar 

  14. Legg, S., Huijts, K.M.H: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep Sea Research-II, 53, 140-156, 2006.

    Article  Google Scholar 

  15. Lighthill, J.: Waves in fluids. Cambridge University Press (1978).

    Google Scholar 

  16. Marshall, J., Adcroft A., Hill C., Perelman L., Heisey, C: A finite-volume, incompressible navier-stokes model for studies of the ocean on parallel computers. Journ. Geophys. Res. 102:5753–5766 (1997).

    Article  Google Scholar 

  17. MacKinnon, J.A., Winters, K.B.: Subtropical Catastrophe: significant loss of low-mode tidal energy at 28.9 degrees. Geophys. Res. Lett. 32, L15605, doi:10.1029/2005GL023376 (2005).

    Article  Google Scholar 

  18. Mowbray, D.E., Rarity, B.S.H.: The internal wave pattern produced by a sphere moving vertically in a density stratified liquid. J. Fluid Mech. 30, 489–495 (1967).

    Article  Google Scholar 

  19. Peacock, T., Echeverri, P., Balmforth, N.J.: An experimental investigation of internal wave beam generation by two-dimensional topography. J. Phys. Ocean. 38, 235–242 (2008).

    Article  Google Scholar 

  20. Phillips, O.M.: The dynamics of the upper ocean. Cambridge University Press (1966).

    Google Scholar 

  21. Staquet, C., Sommeria, J., Goswami, K., Mehdizadeh, M.: Propagation of the internal tide from a continental shelf: laboratory and numerical experiments. Proceedings of the Sixth International Symposium on Stratified Flows, Perth, Australia, 11-14 December (2006).

    Google Scholar 

  22. Tabaei, A., Akylas, T.R.: Nonlinear Internal Gravity Wave Beams. J. Fluid Mech. 482, 141–161 (2003).

    Article  Google Scholar 

  23. Tabaei, A., Akylas, T.R., Lamb, K.G.: Nonlinear Effects in Reflecting and Colliding Internal Wave Beams. J. Fluid Mech. 526, 217–243 (2005).

    Article  Google Scholar 

  24. Thomas, N.H., Stevenson, T.N.: A similarity solution for viscous internal waves. J. Fluid Mech. 54, 495–506 (1972).

    Article  Google Scholar 

  25. Zhang, H.P., King, B., Swinney, H.L.: Experimental study of internal gravity wvaes genarated by supercritical topography. Physics Fluids 19, 096602 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivane Pairaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pairaud, I., Staquet, C., Sommeria, J., Mahdizadeh, M.M. (2010). Generation of harmonics and sub-harmonics from an internal tide in a uniformly stratified fluid: numerical and laboratory experiments. In: Dritschel, D. (eds) IUTAM Symposium on Turbulence in the Atmosphere and Oceans. IUTAM Bookseries, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0360-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0360-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0359-9

  • Online ISBN: 978-94-007-0360-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics