Skip to main content

Are Cyanobacterial Mats Precursors of Stromatolites?

  • Chapter
  • First Online:
STROMATOLITES: Interaction of Microbes with Sediments

Abstract

Since James Hutton established the principle of uniformitarism in 1788, direct comparisons between ancient and present processes have been key elements in geological and paleontological observations. Lyell and Darwin successfully applied uniformitarism using reasoning and inference to obtain the missing data from incomplete evidence (Gould, 1983). This actualistic approach has also permeated the study of stromatolites and their living analogs, modern microbial mats. As early as 1908, Kalkowsky (1908), who coined the term stromatolites, recognized not only the organic nature of stromatolites, but also the participation of microbial life in their construction (Riding, 2008, and references therein), as he wrote: ‘stromatolites have a fine more or less even layered fabric.and the participation of simple plants gave rise to limestone precipitation’ (translation from Prof. J. Paul, 2008). The structural similarity between algal mats and intertidal stromatolites was documented since the beginning of the twentieth century; Walcott (1914) even presumed the participation of cyanobacteria by then (Awramik and Grey, 2005). The early observations of Black (1933) also included the participation of cyanobacteria in the modern marine microbialites from the Bahamas. The precipitation of calcium carbonate, erosive boring, and binding of sediments were identified as main processes in these algal carbonates (Fritsch, 1945; Pettijohn, 1957; Sharp, 1970). Later Logan et al. (1964) proposed a popular general classification system to group the main morphologies found in ‘algal stromatolites’ when he analyzed recent stromatolites from Shark Bay in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, D.G. (1992) Multicellularity in cyanobacteria, In: S. Mohan, C. Dow and J. A. Cole (eds.) Prokaryotic structure and function, a new perspective. Society for General Microbiology Symposium, Vol. 47. Cambridge, UK, Cambridge University Press, pp. 341–384.

    Google Scholar 

  • Adams, D.G. (2000) Symbiotic interactions, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria. Kluwer Academic, Dordrecht, pp. 523–561.

    Google Scholar 

  • Adams, D.G. and Duggan, P. S. (1999) Heterocyst and akinete differentiation in cyanobacteria, New Phytol. 144: 3–33.

    Google Scholar 

  • Allen, M.A., Goh, F., Burnns, B.P. and Neilan, B.A. (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7: 82–96.

    PubMed  CAS  Google Scholar 

  • Altermann, W., Kazmierczak, J., Ohren, A. and Wright, D.T. (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4: 147–166.

    CAS  Google Scholar 

  • Andres, M.S. and Reid, R.P. (2006) Growth morphologies of modern marine stromatolites, a case study from Highborne Cay, Bahamas. Sediment. Geol. 185: 319–328.

    Google Scholar 

  • Aranda-Gómez, J.J., Chacón, E., Charles-Polo, M., Solorio-Munguía, J.G., Vega-González, M., Moreno-Arredondo, A. and Origel-Gutiérrez, G. (2009) Collapse structures at the bottom of a recently desiccated maar lake: Rincón de Parangueo maar, Valle de Santiago, México, IAVCEI – CVS – IAS 3IMC Proceedings, Malargüe, Argentina, 2 pp.

    Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 73: 105–127

    CAS  Google Scholar 

  • Awramik, S.M. (1977) Stromatolites, In: C. Ponnamperuma (ed.) Chemical Evolution of the Early Precambrian. Academic Press, New York, pp. 111–123.

    Google Scholar 

  • Awramik, S.M. (1992) The history and significance of stromatolites, In: M. Schidlowski (ed.) Early Organic Evolution. Springer-Verlag, Berlin, pp. 435–449.

    Google Scholar 

  • Awramik, S.W. (2006) Respect for stromatolites. Nature 441: 700–701.

    PubMed  CAS  Google Scholar 

  • Awramik, S.M. and Grey, K. (2005) Stromatolites: biogenicity, biosignatures, and bioconfusion. Proceed. SPIE 59060: 1–9.

    Google Scholar 

  • Banfield, J.F., Moreau, J.W., Chan, C.S., Welch, S.A. and Little, B. (2001) Mineralogical biosignatures and the search for life in Mars. Astrobiology 1: 447–465.

    PubMed  CAS  Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M. and Visscher, P.T. (2006) Sulphate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131–145.

    CAS  Google Scholar 

  • Benzerara, K., Menguy, N., López-García, P., Yoon, T.H., Kazmierczak, J., Tyliszczak, T., Guyot, F. and Brown, G.E. (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. 103: 9440–9445.

    PubMed  CAS  Google Scholar 

  • Bergman, B., Gallon, J.R., Rai, A.N. and Stal, L.J. (1997) N2-Fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Ecol. 19: 139–185.

    CAS  Google Scholar 

  • Black, M. (1933) The algal sediments of Andros Island, Bahamas. Philos. Trans. R. Soc. Lond. B Biol. Sci. Ser. B. 122: 165–192.

    Google Scholar 

  • Boomer, S.M., Noll, K.L., Geesey, G., Dutton, E.B. (2009) Formation of Multilayered Photosynthetic Biofilms in an Alkaline Thermal Spring in Yellowstone National Park, Wyoming, Appl. Environ. Microbiol. 75: 2464–2475.

    PubMed  CAS  Google Scholar 

  • Brendan, B.P., Goh, F., Allen, M. and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6: 1096–1101.

    Google Scholar 

  • Burne, R.V. and Moore, L.S. (1987) Microbialithes, organosedimentary deposits of benthic microbial communities. Palaios 2: 241.

    Google Scholar 

  • Cady, S.L., Farmer, J.D., Grotzinger, J.P., Schopf, J.W. and Steele, A. (2003) Morphological biosignatures. Astrobiology 3: 351–368.

    PubMed  CAS  Google Scholar 

  • Cardemil, L. and Wolk, L.P. (1981) Isolated heterocysts of Anabaena variabilis synthesize envelope polysaccarides. Biochem. Biophys. Acta 671: 265–276.

    Google Scholar 

  • Castenholz, R.W. (1973) Ecology of blue-green algae in hot springs, In: N.G. Carr and B.A. Whitton (eds.) The Biology of Blue-Green Algae. Blackwell, Oxford, pp. 379–414.

    Google Scholar 

  • Castenholz, R.W. (1984) Composition of hot spring microbial mats, a summary, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats Stromatolites. Alas R. Liss, New York, pp. 101–119.

    Google Scholar 

  • Castenholz, R.W. (2001) General characteristics of the cyanobacteria, In: E. Garrity, D.R. Booner and R.W. Castenholz (eds.) Bergey’s Manual of Systematic Bacteriology 1. Springer, New York, pp. 474–487.

    Google Scholar 

  • Castenholz, R.W. (2004) Phototrophic bacteria under UV stress, In: J. Seckbach (ed.) Origins, Evolution and Biodiversity of Microbial Life. Kluwer Academic, Dordrecht, pp.445–461.

    Google Scholar 

  • Cavalier-Smith, T. (2003) Genomic reduction and evolution of novel genetic membranes and protein targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Phil. Trans. R. Soc. Lond. 358B: 109–134.

    Google Scholar 

  • Chacón-Baca, E. (2002) Biogeochemical Study of Stromatolites from the Tarahumara Formation in Sonora, Mexico (Estudio Biogeoquímico de los Estromatolitos de la Formación Tarahumara). UNAM, México, 138 pp.

    Google Scholar 

  • Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. and Lappin-Scott, H.M. (1995) Microbial biofilms. Ann. Rev. Microbiol. 49: 711–745.

    CAS  Google Scholar 

  • de Beer, D. and Kühl, M. (2001) Interfacial processes and activities in biofilms and microbial mats, In: B.P. Boudreau and B.B. Jørgensen (eds.) The Benthic Boundary Layer. Oxford University Press, Oxford, pp. 374–394.

    Google Scholar 

  • Decho, A.W. and Kawaguchi, T. (2003) Extracellular polymers (EPS) and calcification within modern marine stromatolites, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms. Kluwer Academic, Dordrecht, pp. 227–240.

    Google Scholar 

  • Decho, A.W., Visscher, P.T. and Reid, R.P. (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 71–86.

    Google Scholar 

  • Decho, A., Visscher, P.T., Braissant, O., Dupraz, C., Norman, R.S., Reid, P.R. and Stolz, J.F. (2008) An emerging framework for understanding marine stromatolites formation, In: J. Reitner, N.V. Queric and M. Reich (eds.) Geobiology of Stromatolites. International Kalkowsky-Symposium, Göttingen Abstract Volume. Universitätsdrucke Göttingen, Germany, pp. 21–22.

    Google Scholar 

  • Decho, A.W., Visscher, P.T., Ferry, J., Kawaguchi, T., He, L., Przekop, K.M., Norman, R.S. and Reid, R.P. (2009) Autoinducers extracted from microbial mats reveal a diversity of N-acylhomoserine lactones (HSL) and abundance changes that may relate to diel pH. Environ. Microbiol. 11: 409–420.

    PubMed  CAS  Google Scholar 

  • Des Marais, D.J. (2003) Biogeochemistry of Hypersaline Microbial Mats. Biol. Bull. 204: 160–167.

    PubMed  CAS  Google Scholar 

  • Dillon, J. and Castenholz, R. (1999) Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: implications for early photosynthetic life. J. Phycol. 35: 673–681.

    CAS  Google Scholar 

  • Dillon, J.G. and Castenholz, R.W. (2003) The synthesis of the UV-screening pigment, scytonemin, and photosynthetic performance in isolates from closely related natural populations of cyanobacteria (Calothrix sp.). Environ. Microbiol. 5: 484–491.

    PubMed  CAS  Google Scholar 

  • Dillon, J.G., Miller, S., Bebout, B., Hulla, M., Pinel, N. and Stahl, D.A. (2009) Spatial and temporal variability in stratified hypersaline microbial mat community. FEMS Microbiol. Ecol. 68: 46–58.

    PubMed  CAS  Google Scholar 

  • Dingding, A., Danhorn, T., Fuqua, C. and Parsek, M.R. (2006) Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc. Natl. Acad. Sci. U.S.A. 103: 3828–3833.

    Google Scholar 

  • Douglas, S. (2005) Mineralogical footprints of microbial life. Am. J. Sci. 305: 503–525.

    CAS  Google Scholar 

  • Douglas, D., Peat, A., Whitton, B.A. and Wood, P. (1986) Influence of iron status on structure of the cyanobacterium (blue–green alga) Calothrix parietina. Cytobios 47: 155–165.

    CAS  Google Scholar 

  • Dove, J.E., Yasukawa, K., Tinsley, C.R. and Nassif, X. (2003) Production of the signalling molecule, autoinducer-2, by Neisseria meningitidis, lack of evidence for a concerted transcriptional response. Microbiology 149: 1859–1869.

    PubMed  CAS  Google Scholar 

  • Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13: 429–438.

    PubMed  CAS  Google Scholar 

  • Dupraz, C., Patissina, R. and Verrecchia, E.P. (2006) Translation of energy into morphology, Simulation of stromatolite morphospace using a stochastic model. Sediment. Geol. 185: 185–203.

    Google Scholar 

  • Dvornyk, V. and Nevo, E. (2003) Genetic polymorphism of cyanobacteria under permanent natural stress, a lesson from the “Evolution Canyons”. Res. Microbiol. 154: 79–84.

    PubMed  CAS  Google Scholar 

  • Ehrlich, H.L. (1981) Geomicrobiology. Marcel Dekker, Inc., New York, 408 pp.

    Google Scholar 

  • Elster, J. and Komarek, O. (2003) Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antarct. Sci. 15: 189–201.

    Google Scholar 

  • Fay, P. (1983) The Blue-Greens (Cyanophyta-Cyanobacteria), The Institute of Biology’s Studies in Biology no 160. Edward Arnold, Baltimore, 88 pp.

    Google Scholar 

  • Fenchel, T., King, G.M. and Blackburn, T.H. (1998) Bacterial Biogeochemistry. Academic Press, San Diego.

    Google Scholar 

  • Fike, D.A., Gammon, C.L., Ziebis, W. and Orphan, V.J. (2008) Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J. 2: 749–759.

    PubMed  CAS  Google Scholar 

  • Flemming, H.C., Strathmann, M. and Leon Morales, C.F. (2007) Microbial effects, Chapter 9, In: B. Westrich and U. Forstner (eds.) Sediment Dynamics and Pollutant Mobility in Rivers, an Interdisciplinary Approach. Springer-Verlag, Berlin.

    Google Scholar 

  • Frankel, R.B. and Bazylinski, D.A. (2003) Biologically-induced mineralization in bacteria, In: P.M. Dove, J.J. De Yoreo and S. Wiener (eds.) Biomineralization. Rev. Mineral. Geochem. 54: 95–114.

    Google Scholar 

  • Fritsch, F.E. (1945) The Structure and Reproduction of the Algae. Cambridge University Press, London, 940 pp.

    Google Scholar 

  • Galperin, M.Y. and Gomelsky, M. (2005) Bacterial signal transduction modules: from genomics to biology. ASM News 71: 326–333.

    Google Scholar 

  • Garcia-Pichel, F., Sherry, N.D. and Castenholz, R.W. (1992), Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp., Photochem. Photobiol 56: 17–23.

    PubMed  CAS  Google Scholar 

  • García-Pichel, F., Nübel, U. and Muyzer, G. (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria, Arch Microbiol 169: 469–482.

    PubMed  Google Scholar 

  • García-Pichel, F., Johnson, S.L., Youngkin, D. and Belnap, J. (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau, Microb Ecol 46: 312–321.

    PubMed  Google Scholar 

  • García-Pichel, F. (2008) Molecular ecology and environmental genomics, In: A. Herrero and E. Flores (eds.) The Cyanobacteria, Molecular Biology, Genetics and Evolution. Caister Academic Press, Norfolk, pp. 60–87.

    Google Scholar 

  • Gera, Ch. and Srivastava, S. (2006) Quorum-sensing, the phenomenon of microbial communication. Curr. Sci. 90: 666–676.

    CAS  Google Scholar 

  • Gerdes, G., Klenke, T. and Noffke, N. (2000) Microbial signatures in peritidal siliciclastic sediments, a catalogue. Sedimentology 47: 279–308.

    CAS  Google Scholar 

  • Giovannoni, S.J., Turner, S., Olsen, G.J., Barns, S., Lane, D.J. and Pace, N.R. (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170: 3584–3592.

    PubMed  CAS  Google Scholar 

  • Goh, F., Allen, M.A., Leuko, S., Kawaguchi, T., Decho, A.W., Burns, B.P., Neilan, B.A. (2009) Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. The ISME J. 3: 383–396.

    CAS  Google Scholar 

  • Golubic, S. (1991) Modern stromatolites – a review, In: R. Riding (ed.) Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, pp. 541–561.

    Google Scholar 

  • Golubic, S., Hernandez-Marine, M. and Hoffmann, L. (1996) Developmental aspects of branching in filamentous Cyanophyta/Cyanobacteria. Algol. Stud. 83: 303–329.

    Google Scholar 

  • Golubic, S., Seong-Joo, L. and Browne, K.M. (2000) Cyanobacteria: architects of sedimentary structures, In: R. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, pp. 57–67.

    Google Scholar 

  • Gould, S.J. (1983) Hen’s Teeth and Horse’s Toes. W. W. Norton, New York.

    Google Scholar 

  • Grossman, A.R., Schaefer, M.R., Chiang, G.G. and Collier, J.L. (1994) The responses of cyanobacteria to environmental conditions, light and nutrients, In: A. Bryant (ed.) The Molecular Biology of Cyanobacteria. Kluwer Academic, Dordrecht, pp. 641–675.

    Google Scholar 

  • Grotzinger, J.P. and Knoll, A.H. (1999) Precambrian stromatolites, evolutionary milestones or environmental dipsticks? Ann. Rev. Earth Planet. Sci. 27: 313–339.

    CAS  Google Scholar 

  • Guerrero, M.G. and Lara, C. (1987) Assimilation of organic nitrogen, In: P. Fay and C. Van Baalen (eds.) The Cyanobacteria. Elsevier, Oxford, pp. 163–186.

    Google Scholar 

  • Gugger, M.F. and Hoffmann, L. (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int. J. Syst. Evol. Microbiol. 54: 349–357.

    PubMed  CAS  Google Scholar 

  • Havemann, S.A. and Foster, J.S. (2008) A comparative characterization of the microbial diversity in an artificial microbialite model and a natural stromatolite. Appl. Environ. Microbiol. 74: 7410–7421.

    PubMed  CAS  Google Scholar 

  • Herdman, M. (1987) Akinetes, structure and function, In: P. Fay and C. Van Baalen (eds.) The Cyanobacteria. Elsevier, Amsterdam, pp. 227–250.

    Google Scholar 

  • Howes, I. (1989) Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia 172: 1–18.

    Google Scholar 

  • Ivanikova, N.V., Popels, L.C., Michael, R., McKay, L. and Bullerjahn, G.S. (2007) Lake superior supports novel clusters of cyanobacterial picoplankton. Appl. Environ. Microbiol. 73: 4055–4065.

    PubMed  CAS  Google Scholar 

  • Jahnke, L.L., Eder, W., Huber, R., Hope, J.M., Hinrichs, K.-U., Hayes, J.M., Des Marais, D.J., Cady, S.L. and Summons, R.E. (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl. Environ. Microbiol. 67: 5179–5189.

    PubMed  CAS  Google Scholar 

  • Jahnke, L., Tsegereda, E., Hope, J., Turk, K.A., van Zuilen, M., Des Marais, D., Farmer, J.D. and Summons, R.E. (2004) Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium. Geobiology 2: 31–47.

    CAS  Google Scholar 

  • Jahnke, L.L., Orphan, V.J., Embaye, T., Turk, K.A., Kubo, M., Summons, R.E. and Des Marais, D.J. (2008) Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. Geobiology 6: 394–410.

    PubMed  CAS  Google Scholar 

  • Javor, B. (1989) Hypersaline Environments, Microbiology and Geochemistry. Springer-Verlag, Berlin, 328 pp.

    Google Scholar 

  • Jing, H.M., Aitchison, J.C., Lacap, D.C., Peeraornpisal, Y., Sompong, U., Pointing, S.B. (2005) Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, The Philippines and Thailand. Extremophiles 9: 325–332.

    CAS  Google Scholar 

  • Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed – the role of sulfate reduction. Nature 296: 643–645.

    Google Scholar 

  • Kalkowsky, E. (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschr. Deutsch. Geol. Gesellschf. 60: 68–125.

    Google Scholar 

  • Kawaguchi, T. and Decho, A.W. (2002) Isolation and biochemical characterization of extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamans) and its inhibitory effect on CaCO3 precipitation. Prep. Biochem. Biotech. 32: 51–63.

    PubMed  CAS  Google Scholar 

  • Knee, E.M., Gong, F.C., Gao, M., Tepliski, M., Jones, A.R., Foxworthy, A., Mort, A.J. and Bauer, W.D. (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol. Plant Microb. Interact. 14: 775–784.

    PubMed  CAS  Google Scholar 

  • Knoll, A.H. (2008) Cyanobacteria and earth history, In: A. Herrero and E. Flores (eds.) The Cyanobacteria, Molecular Biology, Genetics and Evolution. Caister Academic Press, Norfolk, pp. 1–20.

    Google Scholar 

  • Komárek, J. and Anagnostidis, K. (1989) Modern approach to the classification system of Cyanophytes 4 Nostocales. Arch. Hydrobiol. Suppl 82, 3 Algol. Stud. 36: 247–345.

    Google Scholar 

  • Krüger, M., Treude, T., Wolters, H., Nauhaus, K., Boetius, A. (2005) Microbial methane turnover in different marine habitats, Paleogeog. Paleoclimat. Palaeoecol. 227: 6–17.

    Google Scholar 

  • Krumbein, W.E. (1983) Stromatolites – the challenge of a term in time and space. Precamb. Res. 20: 493–531.

    Google Scholar 

  • Lau, M.C., Aitchison, J.C. and Pointing, S.B. (2009) Bacterial community composition in thermophilic microbial mats from the five hot springs in Central Tibet. Extremophiles 13: 139–149

    PubMed  Google Scholar 

  • Leuko, S., Allen, M.A., Goh, F., Burns, B.P., Walter, M.R. and Neilan, B.A. (2007) Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mat. Extremophiles 11: 203–210.

    PubMed  CAS  Google Scholar 

  • Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mats. Appl. Environ. Microbiol. 72: 3685–3695.

    PubMed  CAS  Google Scholar 

  • Logan, B.W., Rezak, R. and Ginsburg, R.N. (1964) Classification and environmental significance of algal stromatolites. J. Geol. 72: 68–83.

    Google Scholar 

  • López-Cortés, A., Garcia-Pichel, F., Nübel, U. and Vázquez-Juarez, R. (2001) Cyanobacterial diversity in extreme environments in Baja California, México, a polyphasic study. Int. Microbiol. 4: 227–36.

    PubMed  Google Scholar 

  • Ludwig, R., Al-Horani, F.A., de Beer, D. and Jonkers, H.M. (2005) Photosynthesis-controlled calcification in a hypersaline microbial mat. Limnol. Oceanogr. 50: 1836–1843.

    CAS  Google Scholar 

  • Macintyre, I.G., Bebout, L.P. and Reid, P.A. (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in bahamian stromatolites. Sedimentology 47: 915–921.

    Google Scholar 

  • Malda, J., López-Sauceda, J., Morales-Puente, P., Cienfuegos, E., Sánchez-Ramos, M. and Chacón, E. (2002) Microbialites from a highly saline crater lake in Rincon de Parangueo, Mexico. ISSOL Abstracts. OLEB 36. Kluwer Academic, Dordrecht, 404 pp.

    Google Scholar 

  • Miller, S.R., Strong, A.L., Jones, K.L. and Ungerer, M.C. (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 75: 4565–4572.

    PubMed  CAS  Google Scholar 

  • Morales-Puente, P., Cienfuegos, E., Sanchez-Ramos, M., Fragoso, D. and Chacon, E. (2002) Carbon Isotopic Variations of Recent Microbial Mats Developed at Sulfurous Springs. ISSOL Abstracts. OLEB 36. Kluwer Academic, Dordrecht, 403 pp.

    Google Scholar 

  • Nagy, M.L., Pérez, A. and Garcia-Pichel, F. (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol. Ecol. 54: 233–245.

    PubMed  CAS  Google Scholar 

  • Nielsen, P.H. and Jahn A. (1999) Extraction of EPS, In: J. Wingender, T.R. New and H.C. Flemming (eds.) Microbial Extracellular Polymeric Substances. Springer-Verlag, Berlin, pp. 49–72.

    Google Scholar 

  • Noffke, N. and Paterson, D. (2008) Microbial interactions with physical sediment dynamics, and their significance for the interpretation of Earth’s biological history. Geobiology 6: 1–4.

    PubMed  CAS  Google Scholar 

  • Nübel, U., Garcia-Pichel, F., Kühl, M. and Muyzer, G. (1999) Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65: 422–430

    PubMed  Google Scholar 

  • Olsen, G.J., Woese, C.R. and Overbeek, R. (1994) The winds of (evolutionary) change, breathing new life into microbiology. J. Bacteriol. 176: 1–6.

    PubMed  CAS  Google Scholar 

  • Olson, J.M. (2006) Photosynthesis in the Archean era. Photosynth. Res. 88: 109–17.

    PubMed  CAS  Google Scholar 

  • Orphan, V.J., Jahnke, L.L., Embaye, T., Turk, K.A., Pernthaler, A. and Des Marais, D.J. (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats. Geobiology 6: 376–393.

    PubMed  CAS  Google Scholar 

  • Osorio-Santos, K. (2007) Comunidades algales asociadas con la formación de oncolitos en corrientes calcáreas de la Huasteca Potosina. Bch. Thesis, Facultad de Ciencias, UNAM, Mexico, 59 pp.

    Google Scholar 

  • Paerl, H.W. (1990) Physiological ecology and regulation of N2 fixation in natural waters. Adv. Microb. Ecol. 8: 305–344.

    Google Scholar 

  • Pajdak-Stós, A., Fialkowska, E. and Fyda, J. (2001) Phormidium autumnale (Cyanobacteria) defense against three ciliate grazer species. Aquat. Microbiol. Ecol. 23: 237–244.

    Google Scholar 

  • Papineau, D., Walker, J.J., Mojzsis, S.J. and Pace, N.R. (2005) Composition and structure of microbial communities from stromatolites of hamelin pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71: 4822–4832.

    PubMed  CAS  Google Scholar 

  • Park, S., Wolanin, P.M., Yuzbashyan, E.A., Lin, H., Darnton, N.C., Stock, J.B., Silberzan, P. and Austin, R. (2003) Influence of topology on bacterial social interaction. Proc. Natl. Acad. Sci. U.S.A. 100: 13910–13915.

    PubMed  CAS  Google Scholar 

  • Paterson, D.M., Aspden, R.J., Visscher, P.T., Consalvey, M., Andres, M.S., Decho, A.W., Stolz, J. and Reid, R.P. (2008) Light-dependant biostabilisation of sediments by stromatolite assemblages. PloS Biol. 3: 3171–3176

    Google Scholar 

  • Paul, J. (2008) Kalkowsky Stromatolites from the Lower Saxony. Excursion, In: J. Reitner, N.V. Queric and M. Reich (eds.) Geobiology of Stromatolites. International Kalkowsky-Symposium October 4–11, 2008, Abstracts, Gottingen, pp. 119–121.

    Google Scholar 

  • Pentecost, A. and Bauld, J. (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomicrobiol. J. 6: 129–135.

    CAS  Google Scholar 

  • Pentecost, A. and Whitton, B.A. (2000) Limestones, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp. 257–279.

    Google Scholar 

  • Pettijohn, F.J. (1957) Sedimentary Rocks, 2nd edn. Harper and Row, New York, 718 pp.

    Google Scholar 

  • Planavsky, N. and Grey, K. (2008) Stromatolite branching in the Neoproterozoic of the Centralian Superbasin, Australia: an investigation into sedimentary and microbial control of stromatolite morphology. Geobiology 6: 33–45.

    PubMed  Google Scholar 

  • Rasmussen, U. and Syvenning, M.M. (2001) Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch. Microbiol. 176: 204–210.

    PubMed  CAS  Google Scholar 

  • Reid, R.P., Visscher, P., Decho, A., Stolz, J., Bebout, B., Dupraz, C., Macintyre, R.P., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F. and Des Marais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.

    PubMed  CAS  Google Scholar 

  • Riding, R. (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol. Croatica 61: 73–103.

    Google Scholar 

  • Roeselers, G., Norris, T.B., Castenholz, R.W., Rysgaard, S., Glud, R.N., Kuhl, M. and Muyzer, G. (2006) Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ. Microbiol. 9: 26–38.

    Google Scholar 

  • Rothschild, L.J and Mancinelli, R.L. (1990) Model of carbon fixation in micobial mats from 3,500 Myr ago to the present. Nature 345: 710–712.

    PubMed  CAS  Google Scholar 

  • Sarkar, S., Bose, P.K., Samanta, P., Sengupta, P. and Eriksson, P.G. (2008) Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precamb. Res. 162: 248–263.

    CAS  Google Scholar 

  • Schmidt, A. (1988) Sulfur metabolism in cyanobacteria, Meth Enzymol 167: 572–583.

    CAS  Google Scholar 

  • Schouten, S., van der Meer, M.T.J., Hopmans, E.C., Rijpstra, W.I.C., Reysenbach, A.-L., Ward, D.M. and Damste, J.S. (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in Hot Springs of Yellowstone National Park. Appl. Environ. Microbiol. 73: 6181–6191.

    PubMed  CAS  Google Scholar 

  • Seckbach, J. and Walsh, M. (2008) From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures, Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Dordrecht.

    Google Scholar 

  • Semikhatov, S.M., Gebelein, C.D., Cloud, P., Awramik, S.M. and Benmore, W.C. (1979) Stromatolite morphogenesis-progress and problems. Can. J. Earth Sci. 16: 992–1015.

    Google Scholar 

  • Sharp, J.H. (1970) Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. J. Sediment. Res. 40: 568–578.

    Google Scholar 

  • Shiraishi, F., Zippel, B., Neu, T.R. and Arp, G. (2008) In situ detection of bacteria in calcified biofilms using FISH and CARD–FISH. J. Microbiol. Methods 75: 103–108.

    PubMed  CAS  Google Scholar 

  • Smith, A.J. (1982) Modes of cyanobacterial carbon metabolism. In: N.G. Carry and B.A. Whitton (eds.), The Biology of Cyanobacteria., vol. 19, Blackwell Scientific Publishers, Oxford, pp. 47–85.

    Google Scholar 

  • Sompong, U., Anuntalabhochai, S., Cutler, R.W., Castenholz, R.W. and Peerapornpisal, Y. (2008) Morphological and phylogenetic diversity of cyanobacterial populations in six hot springs of Thailand. ScienceAsia 34: 153–162.

    CAS  Google Scholar 

  • Stal, L.J. (1991) The metabolic versatility of the mat-building cyanobacteria Microcoleus chtlonoplastes and Oscillatoria limosa and its ecological significance. Algol. Stud. 64: 453–467.

    Google Scholar 

  • Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131: 1–32.

    CAS  Google Scholar 

  • Stal, L.J. (2000) Cyanobacterial mats and stromatolites, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp. 61–120.

    Google Scholar 

  • Stanier, R.Y. and Cohen-Bazire, G. (1977) Phototrophic prokaryotes, the cianobacteria. Ann. Rev. Microbiol. 31, 225–274.

    CAS  Google Scholar 

  • Steunou, A.S., Bhaya, D., Bateson, M.M., Melendrez, M.C., Ward, D.M., Brecht, E., Peters, J.W., Kuhl, M. and Grossman, A.R. (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc. Natl. Acad. Sci. U.S.A. 103: 2398–2403.

    PubMed  CAS  Google Scholar 

  • Stockner, J., Callieri, C. and Cronberg, G. (2000) Picoplankton and other non-bloomforming cyanobacteria in lakes, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp. 195–231.

    Google Scholar 

  • Stolz, J.F. (2000) Structures of microbial mats and biofilms, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, pp. 1–8.

    Google Scholar 

  • Stolz, J.F., Feinstein, T.N., Salsi, J., Visscher, P. and Reid, P.R. (2001) TEM analysis of microbial mediated sedimentation and lithification in modern marine stromatolites. Am. Mineral. 86: 826–833.

    CAS  Google Scholar 

  • Stoodley, P., Sauer, K., Davies, D.G. and Costerton, J.W. (2002) Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187–209.

    PubMed  CAS  Google Scholar 

  • Sumner, D.Y. (2000) Microbial versus environmental influences on the morphology of late Archean Fenestrate microbialites, In: R. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, pp. 307–314.

    Google Scholar 

  • Tandeau de Marsac, N. (1994) Differentiation of hormogonia and relationships with other biological processes, In: D.A. Bryant (ed.) The Molecular Biology of Cyanobacteria. Kluwer Academic, The Netherlands, pp. 825–842.

    Google Scholar 

  • van der Meer, M.T.J., Schouten, S., Bateson, M.M., Nubel, U., Wieland, A., Kuhl, M., de Leeuw, J.W., Sinninghe Damste, J.S. and Ward, D.M. (2005) Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park. Appl. Environ. Microbiol. 71: 3978–3986.

    PubMed  Google Scholar 

  • Vincent, W., Castenholz, R.W., Downes, M.T. and Howard-Williams, C. (1993) Antarctic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment. J. Phycol. 29: 745–755.

    Google Scholar 

  • Visscher, P.T. and Stolz, J.F. (2005) Microbial mats as bioreactors, populations, processes, and products. Palaeogeog. Palaeoclimatol. Palaeoecol. 219: 87–100.

    Google Scholar 

  • Visscher, P.T., Reid, P.R. and Bebout, B.M. (1998) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Am. Mineral. 83: 1482–1493.

    CAS  Google Scholar 

  • Visscher, P.T., Reid, R.P. and Bebout, B.M. (2000) Microscale observations of sulfate reduction, Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922.

    CAS  Google Scholar 

  • Walcott, C.D. (1914) Cambrian geology and Palentology III., Precambrian Algonkian algal flora. Smithsonian Miscel. Collect. 67: 77–156.

    Google Scholar 

  • Wang, D.Y.C., Kumar, S. and Hedges, S.B. (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. Biol. Sci. 266B: 163–171.

    Google Scholar 

  • Ward, D.M., Bateson, M.M., Weller, R. and Ruff-Roberts, A.L. (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microb. Ecol. 12: 219–286.

    CAS  Google Scholar 

  • Weckesser, J., Drews, G. and Mayer, H. (1979) Lipopolysaccharides of photosynthetic prokaryotes. Annu. Rev. Microbiol. 33: 215–239.

    PubMed  CAS  Google Scholar 

  • Westall, F. (2005) Life on the early earth: a sedimentary view. Science 308: 366–367.

    PubMed  CAS  Google Scholar 

  • Westall, F. (2008) Morphological biosignatures in early terrestrial and extraterrestrial materials. Space. Sci. Rev. 135: 95–114.

    Google Scholar 

  • Whitehead, N.A., Barnard, A.M., Slater, H., Simpson, N.J. and Salmond, G.P. (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 25: 365–404.

    PubMed  CAS  Google Scholar 

  • Whitton, B.A. (1992) Diversity, ecology and taxonomy of the cyanobacteria, In: N.H. Mann and N.G. Carr (eds.) Photosynthetic Prokaryotes, Biotechnology Handbooks 6. Plenum Press, London, pp. 1–51.

    Google Scholar 

  • Whitton, B.A. (2000) Soils and rice-fields, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp. 233–255.

    Google Scholar 

  • Whitton, B.A. and Potts, M. (eds.) (2000) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Dordrecht, pp. 233–255.

    Google Scholar 

  • Wilkinson, C.R. and Fay, P. (1979) Nitrogen-fixation in coral-reef sponges with symbiotic cyanobacteria. Nature 279: 527–529.

    CAS  Google Scholar 

  • Wingender, J., Neu, T.R. and Flemming, H.-C. (1999) What are bacterial extracellular polymeric substances?, In: J. Wingender, T.R. Neu and H.C. Flemming (eds.) Microbial Extracellular Polymeric Substances. Springer Verlag, Berlin, pp. 1–19.

    Google Scholar 

  • Wolk, C.P., Ernst, A. and Elia, J. (1994) Heterocyst metabolism and development, In: A. Bryant (ed.) The Biology of Cyanobacteria. Kluwer Academic, Dordrecht, pp. 769–823.

    Google Scholar 

  • Wood, P., Peat, A. and Whitton, B.A. (1986) Influence of phosphorous status on fine structure of the cyanobacterium (blue–green alga) Calothrix parietina. Cytobios 47: 89–99.

    CAS  Google Scholar 

  • Xavier, J.B. and Foster, K.R. (2007) Cooperation and conflict in microbial biofilms. Proc. Natl. Acad. Sci. U.S.A. 104: 876–881.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the expert and insightful and constructive comments from the reviewers (Alain Préat, Jesse Dillon, and an anonymous reviewer). The authors are especially grateful to the editor, Prof. Vinod C. Tewari for his kind invitation and his constant encouragement, kindness, and patience. This work was funded by project PROMEP-103-5/07/2523 (SEP) and by Research Project CONACyT-P2-83500-CB to E. Chacón, and a fellowship (to E. Berrendero) from the Ministerio de Asustos Exteriores y de Cooperación, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chacón B. Elizabeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Elizabeth, C.B., Gómez, E.B., Montejano, G., Barrera, J.M.M., Sanchez-Ramos, M.A. (2011). Are Cyanobacterial Mats Precursors of Stromatolites?. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_14

Download citation

Publish with us

Policies and ethics