Skip to main content

Water and Nutrient Transport in Nematode Feeding Sites

  • Chapter
  • First Online:
Genomics and Molecular Genetics of Plant-Nematode Interactions

Abstract

Plant parasitic nematodes have developed complex strategies to obtain nutrients from their hosts. In many cases specialised feeding cells are induced which establish a strong sink for water and nutrients. This chapter describes the different structural, physiological and molecular mechanisms by which host plants were found to supply water and solutes over long and short distances. A number of specific adaptations are found, especially in short-distance transport in feeding cells of sedentary nematodes. They include wall modifications, facilitated water transport, and active solute transport via transport proteins along the apoplast as well as symplasmic transport via plasmodesmata. Feeding cells are unique in that they combine opposing phenomena at the same time: on the one hand a strong sink is generated by high metabolic activity and accumulation of solutes. On the other hand large amounts of water and solutes are withdrawn by the nematodes from the feeding cells without reducing their viability and productiveness. Finally, knowledge on the nature of nutrients and nematode adaptations to limited nutrient supply is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asthir B, Spoor W, Duffus C, Parton RM (2001) The location of (1-3)-Ăź-glucan in the nucellar projection and in the vascular tissue of the crease in developing barley grain using a (1-3)-Ăź-glucan-specific monoclonal antibody. Planta 214:85–88

    Article  PubMed  CAS  Google Scholar 

  • Barcala M, GarcĂ­a A, Cabrera J, Casson S, Lindsey K, Favery B, GarcĂ­a-Casado G, Solano R, Fenoll C, Escobar C (2010) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 61:698–712

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or C, Kapulnik Y, Koltai H (2005) A broad characterization of the transcriptional profile of the compatible tomato response to the plant parasitic root knot nematode Meloidogyne javanica. Eur J Plant Pathol 111:181–192

    Article  CAS  Google Scholar 

  • Betka M, Grundler FMW, Wyss U (1991) Influence of changes in the nurse cell system (syncytium) on sex determination and development of the cyst nematode Heterodera schachtii: Single amino acids. Phytopathology 81:75–79

    Article  CAS  Google Scholar 

  • Bird AF, Loveys BR (1975) The incorporation of photosynthates by Meloidogyne javanica. J Nematol 7:112–113

    Google Scholar 

  • Böckenhoff A (1995) Untersuchungen zur Physiologie der Nährstoffversorgung des RĂĽbenzystennematoden Heterodera schachtii und der von ihm induzierten Nährzellen in Wurzeln von Arabidopsis thaliana unter Verwendung einer speziell adaptierten in situ Mikroinjektionstechnik. PhD thesis. Christian-Albrechts Universität, Kiel, Germany

    Google Scholar 

  • Böckenhoff A, Grundler FMW (1994) Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitol 109:249–254

    Article  Google Scholar 

  • Böckenhoff A, Prior DAM, Grundler FMW, Oparka KJ (1996) Induction of phloem unloading in Arabidopsis thaliana roots by the parasitic nematode Heterodera schachtii. Plant Physiol 112:1421–1427

    Article  PubMed  Google Scholar 

  • Carslbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, VatĂ©n A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariuttayrjo Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  Google Scholar 

  • Complainville A, Brocard L, Roberts I, Dax E, Sever N, Sauer N, Kondorosi A, Wolf S, Oparka K, Crespi M (2003) Nodule initiation involves the creation of a new symplasmic field in specific root cells of Medicago species. Plant Cell 15:2778–2791

    Article  PubMed  CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  PubMed  Google Scholar 

  • Dorhout R, Gommers FJ, Kollöffel C (1993) Phloem transport of carboxyfluorescein through tomato roots infected with Meloidogyne incognita. Physiol Mol Plant Pathol 43:1–10

    Article  CAS  Google Scholar 

  • Dorhout R, Kollöffel C, Gommers FJ (1988) Transport of an apoplastic fluorescent dye to feeding sites induced in tomato roots by Meloidogyne incognita. Phytopathology 78:1421–1424

    Article  Google Scholar 

  • Fudali S, Golinowski W (2007) The reorganization of root anatomy and ultrastructure of syncytial cells in tomato (Lycopersicon esculentum Mill.) infected with potato cyst nematode (Globodera rostochiensis Woll.). Acta Soc Bot Pol 76:181–191

    Google Scholar 

  • Fuller VL, Lilley CJ, Atkinson HJ, Urwin PE (2007) Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. Mol Plant Pathol 8:595–609

    Article  PubMed  CAS  Google Scholar 

  • Gisel A, Barella S, Hempel F, Zambryski P (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889

    PubMed  CAS  Google Scholar 

  • Golinowski W, Grundler FMW, Sobczak M (1996) Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194:103–116

    Article  Google Scholar 

  • Goverse A, Biesheuvel J, Wijers GJ, Gommers FJ, Bakker J, Schots A, Helder J (1998) In planta monitoring of the activity of two constitutive promoters, CaMV 35S and TR2’, in developing feeding cells induced by Globodera rostochiensis using green fluorescent protein in combination with confocal laser scanning microscopy. Physiol Mol Plant Pathol 52:275–284

    Article  CAS  Google Scholar 

  • Grundler FMW, Betka M, Wyss U (1991) Influence of changes in the nurse cell system (syncytium) on sex determination and development of the cyst nematode Heterodera schachtii: Total amounts of proteins and amino acids. Phytopathology 81:70–74

    Article  CAS  Google Scholar 

  • Grundler FMW, Sobczak M, Golinowski W (1998) Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur J Plant Pathol 104:545–551

    Article  Google Scholar 

  • Hammes UZ, Schachtman DP, Berg RH, Nielsen E, Koch W, M. McIntyre LM, Taylor CG (2005) Nematode-induced changes of transporter gene expression in Arabidopsis roots. Mol Plant Microbe Interact 18:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Hofius D, Herbers K, Melzer M, Omid A, Tacke E, Wolf S, Sonnewald U (2001) Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. Plant J 28:529–543

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Grundler FMW (2006) Females and males of root-parasitic cyst nematodes induce different symplasmic connections between their syncytial feeding cells and the phloem in Arabidopsis thaliana. Plant Physiol Biochem 44:430–433

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Wieczorek K, Blöchl A, Grundler FMW (2007) Sucrose supply to nematode-induced syncytia depends on the apoplasmic and the symplasmic pathway. J Exp Bot 58:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Szakasits D, Blöchl A, Sobczak M, Daxböck-Horvath S, Golinowski W, Bohlmann H, Grundler FMW (2008) Starch serves as carbohydrate storage in nematode-induced syncytia. Plant Physiol 146:228–235

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Hess PH, Szakasits D, Blöchl A, Wieczorek K, Daxböck-Horvath S, Bohlmann H, van Bel AJE, Grundler FMW (2009a) Diversity and activity of sugar transporters in nematode-induced root syncytia. J Exp Bot 60:3065–3095

    Article  Google Scholar 

  • Hofmann J, Koleva P, Kolev N, Daxböck-Horvath S, Grundler FMW (2009b) The Arabidopsis thaliana sucrose transporter gene AtSUC4 is expressed in Meloidogyne incognita-induced root galls. J Phytopathol 157:256–261

    Article  CAS  Google Scholar 

  • Hofmann J, Youssef-Banora M, De Almeida Engler J, Grundler FMW (2010a) The role of callose deposition along plasmodesmata in nematode feeding sites. Mol Plant Microbe Interact 23:549–557

    Article  CAS  Google Scholar 

  • Hofmann J, El Ashry AEN, Anwar S, Erban A, Kopka J, Grundler FMW (2010b) Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J 62:1058–1071

    CAS  Google Scholar 

  • Holtmann B, Kleine M, Grundler FMW (2000) Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 211:39–50

    Article  Google Scholar 

  • Hoth S, Schneidereit A, Lauterbach C, Scholz-Starke J, Sauer N (2005) Nematode infection triggers the de novo formation of unloading phloem that allows macromolecular trafficking of green fluorescent protein into syncytia. Plant Physiol 138:383–392

    Article  PubMed  CAS  Google Scholar 

  • Hoth S, Stadler R, Sauer N, Hammes UZ (2008) Differential vascularization of nematode-induced feeding sites. Proc Natl Acad Sci U S A 105:12617–12622

    Article  PubMed  CAS  Google Scholar 

  • Hussey RS, Grundler FMW (1998) Nematode parasitism of plants. In: Perry RN, Wright J (eds) The physiology and biochemistry of free-living and plant parasitic nematodes. Cab International, Oxford, pp 213–246

    Google Scholar 

  • Hussey RS, Mims CW (1991) Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyneincognita. Protoplasma 162:99–107

    Article  Google Scholar 

  • Hussey RS, Mims CW, Westcott SW (1992) Ultrastructure of root cortical-cells parasitized by the ring nematode Criconemella-xenoplax. Protoplasma 167:55–65

    Article  Google Scholar 

  • Ithal N, Recknor J, Nettleton D, Maier R, Baum TJ, Mitchum MG (2007) Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol Plant Microbe Interact 20:510–525

    Article  PubMed  CAS  Google Scholar 

  • Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette M-L, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    Article  PubMed  CAS  Google Scholar 

  • Jones MGK (1981) Host cell responses to endoparasitic nematode attack: structure and function of giant cells and syncytia. Ann Appl Biol 97:353–372

    Article  CAS  Google Scholar 

  • Jones MGK, Dropkin VH (1976) Scanning electron microscopy of nematode-induced giant transfer cells. Cytobios 15:149–161

    PubMed  CAS  Google Scholar 

  • Jones MGK, Northcote DH (1972a) Multinucleated transfer cells induced in Coleus roots by the root-knot nematode, Meloidogyne aremaria. Protoplasma 75:381–395

    Article  Google Scholar 

  • Jones MGK, Northcote DH (1972b) Nematode-induced syncytium-a multinucleated transfer cell. J Cell Sci 10:789–809

    CAS  Google Scholar 

  • Jones MGK, Payne HL (1977) The structure of syncytia induced by the phytoparasitic nematode Nacobbus aberrans in tomato roots, and the possible role of plasmodesmata in their nutrition. J Cell Sci 23:299–313

    PubMed  CAS  Google Scholar 

  • Jones MGK, Novacky A, Dropkin VH (1975) Transmembrane potential of parenchyma cells and nematode-induced transfer cells. Protoplasma 85:15–37

    Article  Google Scholar 

  • Jones RK (1978) Feeding-behavior of Helicotylenchus-spp. on wheat roots. Nematologica 24:88

    Article  Google Scholar 

  • Juergensen K, Scholz-Starke J, Sauer N, Hess P, van Bel AJE, Grundler FMW (2003) The companion cell-specific Arabidopsis disaccharide carrier AtSUC2 is expressed in nematode-induced syncytia. Plant Physiol 131:61–69

    Article  PubMed  CAS  Google Scholar 

  • JĂĽrgensen K (2001) Untersuchungen zum Assimilat- und Wassertransfer in der Interaktion zwischen Arabidopsis thaliana and Heterodera schachtii. PhD thesis, Agrar- und Ernährungswissenschaftlichen Fakultät, Christian-Albrecht Universität, Germany

    Google Scholar 

  • Karanastasi E, Decraemer W, Wyss U, Brown DJF (2004) The ultrastructure of the feeding apparatus and pharyngeal tract of four European species of Trichodoridae (Nematoda : Triplonchida). Nematology 6:695–713

    Article  Google Scholar 

  • Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:1–7

    Article  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    Article  PubMed  CAS  Google Scholar 

  • Kronberg K, Vogel F, Rutten T, Hajirezaei M-R, Sonnewald U, Hofius D (2007) The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein. Plant Physiol 145:905–918

    Article  PubMed  CAS  Google Scholar 

  • McClure MA (1977) Meloidogyne incognita: A metabolic sink. J Nematol 9:89–90

    Google Scholar 

  • Mueller J, Wyss U, Rehbock K (1981) Growth of Heterodera-schachtii with remarks on amounts of food consumed. Rev Nematol 4:227–234

    Google Scholar 

  • Mundo-Ocampo M, Baldwin JG (1983a) Host response to Meloidodera spp. (Heteroderidae). J Nematol 15:544–554

    CAS  Google Scholar 

  • Mundo-Ocampo M, Baldwin JG (1983b) Host-parasite relationships of Atalodera spp. (Heteroderidae). J Nematol 15:234–243

    CAS  Google Scholar 

  • Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6:759–766

    Article  Google Scholar 

  • Opperman CH, Taylor CG, Conkling MA (1994) Root-knot nematode-directed expression of a plant root-specific gene. Science 263:221–223

    Article  PubMed  CAS  Google Scholar 

  • Puthoff DP, Nettleton D, Rodermel SR, Baum TJ (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analysis of microarray expression profiles. Plant J 33:911–921

    Article  PubMed  CAS  Google Scholar 

  • Rinne PL, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    PubMed  CAS  Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Starke J (2002) Die Rolle pflanzlicher Zuckertransportproteine beim Assimilattransfer in das Na¨hrzellensystem von Heterodera schachtii. PhD thesis, University Erlangen-Nuremberg, Germany

    Google Scholar 

  • Sijmons PC, Grundler FMW, von Mende S, Burrows PR, Wyss U (1991) Arabidopsis thaliana as a new model host for plant parasitic nematodes. Plant J 1:245–254

    Article  Google Scholar 

  • Sobczak M, Golinowski W, Grundler FMW (1997) Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii. Eur J Plant Pathol 103:113–124

    Article  Google Scholar 

  • Sobczak M, Golinowski W, Grundler FMW (1999) Ultrastructure of feeding plugs and feeding tubes formed by Heterodera schachtii. Nematology 1:363–374

    Article  Google Scholar 

  • Swiecicka M, Filipecki M, Lont D, Vliet JV, Ling QIN, Goverse A, Bakker J, Helder J (2009) Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis. Mol Plant Pathol 10:487–500

    Article  PubMed  CAS  Google Scholar 

  • Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil DP, Sykacek P, Grundler FMW, Bohlmann H (2009) The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. Plant J 57:771–784

    Article  PubMed  CAS  Google Scholar 

  • Triantaphyllou AC, Hirschmann H (1973) Environmentally controlled sex expression in Meloidodera floridensis. J Nematol 5:181–185

    PubMed  CAS  Google Scholar 

  • Uehara T, Sugiyama S, Masuta C (2007) Comparative serial analysis of gene expression of transcript profiles of tomato roots infected with cyst nematode. Plant Mol Biol 63:185–194

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Moller SG, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Continual green-fluorescent protein monitoring of cauliflower mosaic virus 35S promoter activity in nematode-induced feeding cells in Arabidopsis thaliana. Mol Plant Microbe Interact 10:394–400.

    Article  PubMed  CAS  Google Scholar 

  • Utsuzawa S, Fukuda K, Sakaue D (2005) Use of magnetic resonance microscopy for the nondestructive observation of xylem cavitation caused by pine wilt disease. Phytopathol 95:737–743

    Article  Google Scholar 

  • Wilson SM, Burton RA, Doblin MS, Stone BA, Newbigin EJ, Fincher GB, Bacic A (2006) Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm. Planta 224:655–667

    Article  PubMed  CAS  Google Scholar 

  • Winter H, Lohaus G, Heldt HW (1992) Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol 99:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy R, Lucas WJ (1991) Plasmodesmatal function is probed using transgenic obacco plants that express a virus movement protein. Plant Cell 3:593–604

    PubMed  CAS  Google Scholar 

  • Wyss U (1986) Nurse cell systems of Dorylaimid and Tylenchid nematodes. J Nematol 18:598

    Google Scholar 

  • Wyss U (1992) Observations of the feeding behaviour of Heterodera schachtii throughout development, including events during moulting. Fundam appl Nematol 15:75–89

    Google Scholar 

  • Wyss U, Robertson WM, Trudgill DL (1988) Esophageal bulb function of Xiphinema-index and associated root cell responses assessed by video-enhanced contrast light microscopy. Revue de Nematologie 11:253–262

    Google Scholar 

  • Wyss U, Grundler FMW, MĂĽnch A (1992) The parasitic behaviour of second-stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian M. W. Grundler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grundler, F.M., Hofmann, J. (2011). Water and Nutrient Transport in Nematode Feeding Sites. In: Jones, J., Gheysen, G., Fenoll, C. (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0434-3_20

Download citation

Publish with us

Policies and ethics