Skip to main content

Ultra-Fast Sample Preparation for High-Throughput Proteomics

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry

Abstract

Sample preparation oftentimes can be the Achilles Heel of any analytical process, and in the field of proteomics, preparing samples for mass spectrometric analysis is no exception. Current goals, concerning proteomic sample preparation on a large scale, include efforts toward improving reproducibility, reducing the time of processing and ultimately the automation of the entire workflow. This chapter reviews an array of recent approaches applied to bottom-up proteomics sample preparation to reduce the processing time down from hours to minutes. The current state-of-the-art approaches in the field use different energy inputs such as microwave, ultrasound or pressure to perform the four basic steps in sample preparation: protein extraction, denaturation, reduction/alkylation, and digestion. No single energy input for enhancement of proteome sample preparation has become the universal gold standard. Instead, a combination of different energy inputs tends to produce the best results. This chapter further describes the future trends in the field such as the hyphenation of sample preparation with downstream detection and analysis systems. Finally, a detailed protocol describing the combined use of both pressure cycling technology and ultrasonic energy inputs to hasten proteomic sample preparation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESI:

Electrospray ionization

FDR:

False discovery rate

HIFU:

High intensity focused ultrasound

HPP:

High pressure processing

IAM:

Iodoacetamide

IT:

Ion trap

MAPED:

Microwave-assisted protein enzymatic digestion

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MW:

Molecular weight

NA:

Not assigned

PCT:

Pressure cycling technology

RP:

Reversed phase

TCEP:

Tris(2-carboxyethyl) phosphine

TOF:

Time-of-flight

References

  • Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  CAS  Google Scholar 

  • Blonder, J., Chan, K.C., Issaq, H.J., and Veenstra, T.D. (2006). Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat Protoc 1, 2784–2790.

    Article  CAS  Google Scholar 

  • Boyne, M.T., Garcia, B.A., Li, M., Zamdborg, L., Wenger, C.D., Babai, S., and Kelleher, N.L. (2009). Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval. J Proteome Res 8, 374–379.

    Article  CAS  Google Scholar 

  • Cano, M.P., Hernandez, A., and DeAncos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. J Food Sci 62(1), 85–88.

    Google Scholar 

  • Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.

    Article  CAS  Google Scholar 

  • Domon, B., and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212–217.

    Article  CAS  Google Scholar 

  • Gross, V., Carlson, G., Kwan, A.T., Smejkal, G., Freeman, E., Ivanov, A.R., and Lazarev, A. (2008). Tissue fractionation by hydrostatic pressure cycling technology: the unified sample preparation technique for systems biology studies. J Biomol Tech 19, 189–199.

    Google Scholar 

  • Hauser, N.J., and Basile, F. (2008). Online microwave D-cleavage LC-ESI-MS/MS of intact proteins: Site-specific cleavages at aspartic acid residues and disulfide bonds. J Proteome Res 7, 1012–1026.

    Article  CAS  Google Scholar 

  • Hauser, N.J., Han, H., McLuckey, S.A., and Basile, F. (2008). Electron transfer dissociation of peptides generated by microwave D-cleavage digestion of proteins. J Proteome Res 7, 1867–1872.

    Article  CAS  Google Scholar 

  • Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A. (2003). Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75, 1300–1306.

    Article  CAS  Google Scholar 

  • Hernandez, A., and Cano, M.P. (1998). High-pressure and temperature effects on enzyme inactivation in tomato puree. J Agric Food Chem 46, 266–270.

    Article  CAS  Google Scholar 

  • Hixson, K.K., Adkins, J.N., Baker, S.E., Moore, R.J., Chromy, B.A., Smith, R.D., McCutchen-Maloney, S.L., and Lipton, M.S. (2006). Biomarker candidate identification in Yersinia pestis using organism-wide semiquantitative proteomics. J Proteome Res 5, 3008–3017.

    Article  CAS  Google Scholar 

  • Isaacson, T., Damasceno, C.M., Saravanan, R.S., He, Y., Catala, C., Saladie, M., and Rose, J.K. (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1, 769–774.

    Article  CAS  Google Scholar 

  • Kim, B.C., Lopez-Ferrer, D., Lee, S.M., Ahn, H.K., Nair, S., Kim, S.H., Kim, B.S., Petritis, K., Camp, D.G., Grate, J.W., et al. (2009). Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion. Proteomics 9, 1893–1900.

    Article  CAS  Google Scholar 

  • Kiser, J.Z., Post, M., Wang, B., and Miyagi, M. (2009). Streptomyces erythraeus trypsin for proteomics applications. J Proteome Res 8, 1810–1817.

    Article  CAS  Google Scholar 

  • Lill, J.R., Ingle, E.S., Liu, P.S., Pham, V., and Sandoval, W.N. (2007). Microwave-assisted proteomics. Mass Spectrom Rev 26, 657–671.

    Article  CAS  Google Scholar 

  • Lopez-Ferrer, D., Capelo, J.L., and Vazquez, J. (2005). Ultra fast trypsin digestion of proteins by high intensity focused ultrasound. J Proteome Res 4, 1569–1574.

    Article  CAS  Google Scholar 

  • Lopez-Ferrer, D., Heibeck, T.H., Petritis, K., Hixson, K.K., Qian, W., Monroe, M.E., Mayampurath, A., Moore, R.J., Belov, M.E., Camp, D.G., 2nd, et al. (2008a). Rapid sample processing for LC-MS-based quantitative proteomics using high intensity focused ultrasound. J Proteome Res 7, 3860–3867.

    Article  CAS  Google Scholar 

  • Lopez-Ferrer, D., Hixson, K.K., Smallwood, H.S., Squier, T.C., Petritis, K., and Smith, R.D. (2009). Evaluation of a high-intensity focused ultrasound-immobilized trypsin digestion and 18O-labeling method for quantitative proteomics. Anal Chem 81, 6272–6277.

    Google Scholar 

  • Lopez-Ferrer, D., Martinez-Bartolome, S., Villar, M., Campillos, M., Martin-Maroto, F., and Vazquez, J. (2004). Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. Anal Chem 76, 6853–6860.

    Article  CAS  Google Scholar 

  • Lopez-Ferrer, D., Petritis, K., Hixson, K.K., Heibeck, T.H., Moore, R.J., Belov, M.E., Camp, D.G., 2nd, and Smith, R.D. (2008b). Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: Proteomics on the fly. J Proteome Res 7, 3276–3281.

    Article  CAS  Google Scholar 

  • Lopez-Ferrer, D., Petritis, K., Lourette, N.M., Clowers, B., Hixson, K.K., Heibeck, T., Prior, D.C., Pasa-Tolic, L., Camp, D.G., 2nd, Belov, M.E., et al. (2008c). On-line digestion system for protein characterization and proteome analysis. Anal Chem 80, 8930–8936.

    Google Scholar 

  • Manza, L.L., Stamer, S.L., Ham, A.J., Codreanu, S.G., and Liebler, D.C. (2005). Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5, 1742–1745.

    Article  CAS  Google Scholar 

  • Pramanik, B.N., Mirza, U.A., Ing, Y.H., Liu, Y.H., Bartner, P.L., Weber, P.C., and Bose, A.K. (2002). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci 11, 2676–2687.

    Article  CAS  Google Scholar 

  • Qian, W.J., Liu, T., Petyuk, V.A., Gritsenko, M.A., Petritis, B.O., Polpitiya, A.D., Kaushal, A., Xiao, W., Finnerty, C.C., Jeschke, M.G., et al. (2009). Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled “universal” reference sample. J Proteome Res 8, 290–299.

    Article  CAS  Google Scholar 

  • Rial-Otero, R., Carreira, R.J., Cordeiro, F.M., Moro, A.J., Fernandes, L., Moura, I., and Capelo, J.L. (2007). Sonoreactor-based technology for fast high-throughput proteolytic digestion of proteins. J Proteome Res 6, 909–912.

    Article  CAS  Google Scholar 

  • Russell, W.K., Park, Z.Y., and Russell, D.H. (2001). Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry. Anal Chem 73, 2682–2685.

    Article  CAS  Google Scholar 

  • Sapan, C.V., Lundblad, R.L., and Price, N.C. (1999). Colorimetric protein assay techniques. Biotechnol Appl Biochem 29(Pt 2), 99–108.

    CAS  Google Scholar 

  • Smejkal, G.B., Robinson, M.H., Lawrence, N.P., Tao, F., Saravis, C.A., and Schumacher, R.T. (2006). Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech 17, 173–175.

    Google Scholar 

  • Smejkal, G.B., Witzmann, F.A., Ringham, H., Small, D., Chase, S.F., Behnke, J., and Ting, E. (2007). Sample preparation for two-dimensional gel electrophoresis using pressure cycling technology. Anal Biochem 363, 309–311.

    Article  CAS  Google Scholar 

  • Swatkoski, S., Gutierrez, P., Ginter, J., Petrov, A., Dinman, J.D., Edwards, N., and Fenselau, C. (2007a). Integration of residue-specific acid cleavage into proteomic workflows. J Proteome Res 6, 4525–4527.

    Article  CAS  Google Scholar 

  • Swatkoski, S., Gutierrez, P., Wynne, C., Petrov, A., Dinman, J.D., Edwards, N., and Fenselau, C. (2008). Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications. J Proteome Res 7, 579–586.

    Article  CAS  Google Scholar 

  • Swatkoski, S., Russell, S., Edwards, N., and Fenselau, C. (2007b). Analysis of a model virus using residue-specific chemical cleavage and MALDI-TOF mass spectrometry. Anal Chem 79, 654–658.

    Article  CAS  Google Scholar 

  • van Montfort, B.A., Doeven, M.K., Canas, B., Veenhoff, L.M., Poolman, B., and Robillard, G.T. (2002). Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim Biophys Acta 1555, 111–115.

    Article  Google Scholar 

  • Wang, H., Qian, W.J., Mottaz, H.M., Clauss, T.R., Anderson, D.J., Moore, R.J., Camp, D.G., 2nd, Khan, A.H., Sforza, D.M., Pallavicini, M., et al. (2005). Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res 4, 2397–2403.

    Article  CAS  Google Scholar 

  • Washburn, M.P., Wolters, D., and Yates, J.R., 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.

    Article  CAS  Google Scholar 

  • Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Methods 6, 359–362.

    Article  CAS  Google Scholar 

  • Wolters, D.A., Washburn, M.P., and Yates, J.R., 3rd (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.

    Article  CAS  Google Scholar 

  • Wu, C.C., MacCoss, M.J., Howell, K.E., and Yates, J.R., 3rd (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532–538.

    Article  CAS  Google Scholar 

  • Wu, C.C., and Yates, J.R., 3rd (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21, 262–267.

    Article  CAS  Google Scholar 

  • Xiang, R., Shi, Y., Dillon, D.A., Negin, B., Horvath, C., and Wilkins, J.A. (2004). 2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J Proteome Res 3, 1278–1283.

    Article  CAS  Google Scholar 

  • Zhong, H., Zhang, Y., Wen, Z., and Li, L. (2004). Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat Biotechnol 22, 1291–1296.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Portions of this work were supported by the NIH National Center for Research Resources (NCRR, RR018522), NIH National Cancer Institute (R21 CA12619-01), and the Pacific Northwest National Laboratory’s (PNNL) Laboratory Directed Research and Development Program. This research was enabled in part by capabilities developed under support from the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and the NCRR, and was conducted in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract No. DE-AC05-76RLO 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lopez-Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lopez-Ferrer, D., Hixson, K.K., Belov, M.E., Smith, R.D. (2011). Ultra-Fast Sample Preparation for High-Throughput Proteomics. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_8

Download citation

Publish with us

Policies and ethics