Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 138))

  • 240 Accesses

Abstract

The paper presents an application of Electrical Impedance Tomography to detect a buried object. This application leads to the inverse problem of EIT on an unbounded domain. Here a bounded domain was used instead of an unbounded one. This domain was divided into three regions in such way that the potential distribution was unchanged when compared to that in an unbounded domain. An optimal current pattern was estimated and the corresponding sensitivity was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. EUDEM2, http://www.eudem.vub.ac.be.

    Google Scholar 

  2. Church P.M., Wort P.M., Gagnon S., McFee J.,2001, Performance assessment of an electrical impedance tomography detector for mine-like objects, Proc. SPIE, vol. 4394, April

    Google Scholar 

  3. Wort P.M., Church P.M., Gagnon S., 1999, Preliminary assessment of electrical impedance tomography technology to detect mine-like objects, Proc. SPIE vol. 3710,pp.895–905

    Article  Google Scholar 

  4. Ramirez A., Daily W., Binley A., and LaBrecque, 1999, Complex resistivity tomography for environmental applications, 1st World Congress IPT, Buxton, England, pp. 14–19

    Google Scholar 

  5. Friedman A., 1987, Detection of mines by electric measurements, SIAM J. Appl. Math., vol. 47(1), 201–212

    Article  Google Scholar 

  6. Borcea L., Electrical Impedance Tomography, Inverse Problems, 18, No. 6, 2002, DD.R99–R136.

    Article  Google Scholar 

  7. Gisser D. G., Isaacson D., Newell J. C, 1987: Current topics in impedance imaging, Clin. Phys. Physiol. Meas., vol. 8, Suppl. A, 39–46.

    Article  Google Scholar 

  8. Gisser D. G., Isaacson D., Newell J. C, 1990: Electric current computed tomography and eigenvalues, SIAMJ. Appl. Math., vol. 50 (6), 1623–1634.

    Article  Google Scholar 

  9. Eyuboglu B. M., T. C. Pilkington, T. C., 1993: Comments on distinguishability in electrical impedance imaging, IEEE Trans. Biomed. Eng., vol. 40, 1328–1330.

    Article  CAS  Google Scholar 

  10. Isaacson D., 1986: Distinguishability of conductivities by electric current computed tomography, IEEE Trans. Med. Imag. vol. MI-5, 91–95

    Article  Google Scholar 

  11. Hua P., Woo E. J., Webster J. G., Tompkins W. J., 1992: Improved methods to determine optimal currents in electrical impedance tomography, IEEE Trans, on Med. Imae., vol. 11, pp. 488–495.

    Article  CAS  Google Scholar 

  12. Wtorek J., Bujnowski A., 2001: A reconstruction algorithm based on current measurements and the knowledge of electrode impedance, XI Int. Conf. Electr. Bio-Imped., Oslo, Norwav, 501–504.

    Google Scholar 

  13. Janczulewicz A., and Wtorek J., 2003, An EIT reconstruction based on noisy data, Proc, of the I st National Conf. on Information Technology,Gdansk, pp. 17–25

    Google Scholar 

  14. Woo E. J., Hua P., Webster J. G., Tompkins W. J., 1993: A robust image algorithm and its parallel implementation in electrical impedance tomography, IEEE Trans. on Med. Imag., vol. 12, pp. 137–146.

    Article  CAS  Google Scholar 

  15. Geselowitz D.B., 1971: An application of electrocardiographic lead theory to impedance plethysmography, IEEE Trans. Biomed. Eng., vol. BME-18, 38–41.

    Article  CAS  Google Scholar 

  16. Polinski A., Wtorek J., Bujnowski A., B. Truyen B., Sahli H. and J. Cornelis, Electrode Arrays Applicable to EIT Based Mine Detection: A Comparison of Spatial Sensitivity Distributions, to be published in Proc, of EUDEM2-Scot Conference, Brussels, 15–18,09,2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Wtorek, J., Janczulewicz, A., Poliński, A., Bujnowski, A., Sahli, H., De Bruyn, K. (2004). EUDEM2: Overview and some early findings. In: Schubert, H., Kuznetsov, A. (eds) Detection of Bulk Explosives Advanced Techniques against Terrorism. NATO Science Series, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0962-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0962-1_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1934-0

  • Online ISBN: 978-94-007-0962-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics