Skip to main content

Application of Biotechnology to Maize and Wheat Improvement

  • Chapter
Plant Breeding
  • 1767 Accesses

Abstract

Today, scientists can take advantage of genes that are derived from various sources, including related and unrelated species, those identified via genetic mapping experiments and most recently from the efforts of functional genomics. Through the application of molecular genetics and genetic engineering, coupled. with conventional crossing approaches, these genes can be efficiently incorporated into modern plant varieties. One of the most studied traits at CIMMYT is abiotic stress tolerance, especially tolerance to water-limited conditions. Quantitative Trait Loci (QTL) mapping, has identified several regions of the maize genome involved in the response to water stress. Efforts are underway to identify the underlying genes in these regions and to determine their potential to further improve the water-stress responses in maize and wheat. Candidate gene approaches are also being used employing resistance-like sequences isolated from rice and maize, to find possible homologies with genes conditioning disease resistance in wheat. The possibility of utilizing markers identified for Lr4/Yr29 and Lr34/Yr18 in applications in the wheat breeding activities are being explored. While the PCR-based marker systems have allowed more effective and efficient genotyping, DNA-array technology offers a substantially increase the number of genes that can be analysed. Efforts are also underway to develop complete EST databases for many cereals, including maize and wheat. Marker-assisted selection for polygenic trait improvement is in an important transition phase, and this field is on the verge of producing convincing results. Considering the potential for the development of new strategies, the future for polygenic trait improvement through DNA markers and the contribution of this to plant breeding efforts worldwide, appear bright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D. and Shinozaki K. 1997. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell, 9: 1859–1868.

    PubMed  CAS  Google Scholar 

  • Ahn S., Anderson J. A., Sorrells M. E. and Tanksley S. D. 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol. Gen. Genet., 241: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert H. J., Nelson D. E. and Jensen R. G. 1995. Adaptations to environmental stresses. Plant Cell, 7: 1099–1111.

    PubMed  CAS  Google Scholar 

  • Börner A., Korzun V. and Worl and A. J. 1998. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica, 100: 245–248.

    Article  Google Scholar 

  • Boyer J. S. 1982. Plant productivity and environment. Science, 218: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Bray E. A. 1993. Molecular Responses to Water Deficit. Plant Physiologist, 103: 1035–1040.

    CAS  Google Scholar 

  • Bray E. A. 1997. Plant responses to water deficit. Trends in Plant Science, 2: 48–54.

    Article  Google Scholar 

  • Campbell S. A. and Close T. J. 1997. Dehydrins: genes, proteins and associations with phenotypic traits. New Phytol., 137: 61–74.

    Article  CAS  Google Scholar 

  • Chandler P. M. and Robertson M. 1994. A dehydrin cognate protein from pea (Pisum sativum L. ) with an atypical pattern of expression. Plant Mol. Biol., 26: 805–816.

    Article  PubMed  Google Scholar 

  • Chao S. P., Sharp P. J., Worl and A. J., Warham E. J., Koebner R. M. D. and Gale M. D. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet., 78: 495–504.

    Article  CAS  Google Scholar 

  • Chu S., DeRisi J., Eisen M., Jutholl and J., Botstein D., Brown P. O. and Herskowitz I. 1998. The transcriptional program of sporulation in budding yeast. Science, 282: 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Cushman J. C. and Bohnert H. J. 2000. Genomic approaches to plant stress tolerance. Current Opinions in Plant Biol., 3: 117–124.

    Article  CAS  Google Scholar 

  • Demeke T., Laroche A. and Gaudet D. A. 1996. A DNA marker for the BT-10 common bunt resistance gene in wheat. Genome, 39: 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Devos K. M. and Gale M. D. 1992. The use of randomly amplified DNA markers in wheat. Theor. Appl. Genet., 84: 567–572.

    Article  Google Scholar 

  • Devos K. M., Atkinson M. D., Chinoy C. N., Liu C. and Gale M. D. 1992. RFLP based genetic map of the homeologous group 3 chromosomes of wheat and rye. Theor. Appl. Genet., 83: 931–939.

    Article  CAS  Google Scholar 

  • Devos K. M., Chao S. P., Li Q. Y., Simonetti M. C. and Gale M. D. 1994. Relationships between chromosome 9 of maize and wheat homeologous group 7 chromosomes. Genetics, 138: 1287–1292.

    PubMed  CAS  Google Scholar 

  • Devos K. M., Dubcovsky J., Dvorák J., Chinoy C. N. and Gale M. D. 1995. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet., 91: 282–288.

    Article  CAS  Google Scholar 

  • Devos K. M., Miller T. E. and Gale M. D. 1993. Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor. Appl. Genet., 85: 784–792.

    CAS  Google Scholar 

  • Dweikat I., Ohm H., Patterson F. and Cambron S. 1997. Identification of RAPD markers for 11 hessian fly resistance genes in wheat. Theor. Appl. Genet., 94: 419–423.

    Article  CAS  Google Scholar 

  • Eastwood R. F., Lagudah E. S. and Appels R. 1994. A direct search for DNA sequences linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome, 37: 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Edmeades G. O., Bolanos J., Banziger M., Ribaut J. M., White J. W., Reynolds M. P. and Lafitte H. R. 1998. Improving crop yields under water deficits in the tropics. In: Crop Productivity and Sustainability — Shaping the Future, (eds. ) Chopra V. L., Singh R. B. and Varma A., Proceedings of Second International Crop Science Congress. Oxford and IBH, New Delhi, pp. 437–451.

    Google Scholar 

  • Feuillet C., Messmer M. M., Schachermayr G. and Keller B. 1995. Genetic and physical characterization of the Lrl leaf rust resistance locus in wheat (Triticum aestivum L. ). Mol. and Gen. Genet., 248: 553–562.

    Article  CAS  Google Scholar 

  • Gale, M. D., Atkinson, M. D., Chinoy, C. N. Harcourt, R. L., Jia, J., Li, Q. Y. and Devos, K. M. 1995. Genetic maps of hexaploid wheat. In: Proceeding of the 8th International Wheat Genetics Symposium, (eds. ) Li Z. S. and Xin Z. I., China Agricultural Scientech Press, Beijing, pp. 29–40.

    Google Scholar 

  • Gardiner J., Melia-Hancock S., Hoisington D. A., Chao S. and Coe E. H. 1993. Development of a core RFLP map in maize using an immortalized-F2 population. Genetics, 134: 917–930.

    PubMed  CAS  Google Scholar 

  • Goodwin S. B., Hu X. Y. and Shaner G. 1998. An AFLP marker linked to a gene for resistance to Septoria tritici blotch in wheat. In: Proc. 9th Intl. Wheat Genet. Symp., 3: 108–110.

    Google Scholar 

  • Habban J., Helentjaris T., Sun Y. and Zinselmeier C. 1999. Utilizing new technologies to investigate drought tolerance in maize: a perspective from industry. In: Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments, (eds. ) Ribaut J. M. and Pol and D., A Strategic Planning Workshop held at CIMMYT, El Batan, Mexico, 21-25 June (1999) Mexico D. F. : CIMMYT, pp. 154–155.

    Google Scholar 

  • Hartl L., Mori S. and Schweizer G. 1998. Identification of a diagnostic molecular marker for the powdery mildew resistance gene Pm4b based on fluorescently labelled AFLPs. Proc. 9th Intl. Wheat Genet. Symp., 111–113.

    Google Scholar 

  • Hartl L., Weiss H., Stephan U., Zeller F. J. and Jahoor A. 1995. Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. ). Theor. Appl. Genet., 90: 601–606.

    Article  Google Scholar 

  • Hartl L., Weiss H., Zeller F. J. and Jahoor A. 1993. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat (Triticum aestivum L). Theor. Appl. Genet., 86: 959–963.

    Article  CAS  Google Scholar 

  • Heisey P. W. and Edmeades G. O. 1999. Maize production in drought-stressed environment: technical options and research resource allocation. In: World Maize Facts and Trends. CIMMYT 1997/98

    Google Scholar 

  • Helentjaris T., Weber T. and Wright S. 1986. Use of monosomies to map cloned DNA fragments in maize. Proc. Natl. Acad. Sci., 83: 6035–6039.

    Article  PubMed  CAS  Google Scholar 

  • Hu X. Y., Ohm H. W. and Dweikat I. 1997. Identification of RAPD markers linked to the gene Pml for resistance to powdery mildew in wheat. Theor. Appl. Genet., 94: 832–840.

    Article  CAS  Google Scholar 

  • Ingram J. and Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annual Review Plant Physiology and Plant Molecular Biology, 47: 377–403.

    Article  CAS  Google Scholar 

  • Jia J., Devos K. M., Chao S. P., Miller T. E., Reader S. M. and Gale M. D. 1994. RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pml2, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor. Appl. Genet., 92: 559–565.

    Article  Google Scholar 

  • Khairallah M., Guillén-Andrade H., Alarcon J., Rodriguez C., Ayala L., Henry M., Singh R. P., Jiang C., Sharp P. and Hoisington D. 1998. Mapping of durable resistance to leaf rust and tolerance to BYDV in wheat. In: Proc. 9th Intl. Wheat Genet. Symp., 3: 282–284.

    Google Scholar 

  • Kodama H., Hamada T., Horiguchi G., Nishimura M. and Iba K. 1994. Genetic enhancement of cold tolerance by expression of a gene for chloroplast w-3 fatty acid desaturase in transgenic tobacco. Plant Physiology, 105: 601–605.

    PubMed  CAS  Google Scholar 

  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10: 1391–1406.

    PubMed  CAS  Google Scholar 

  • Marino C. L., Nelson J. C., Lu Y. H., Sorrels M. E., Leroy P., Lopes C. R. and Hart G. E. 1996. RFLP-based linkage maps of the homeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell. ). Genome, 39: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Michelmore R. W., Paran I. and Kesseli R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci., 88: 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  • Nelson J. C., Sorrells M. E., Van Deynze A. E., Lu Y. H., Atkinson M., Bernard M., Leroy P., Faris J. D. and Anderson J. A. 1995a. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 141: 721–731.

    PubMed  CAS  Google Scholar 

  • Nelson J. C., Van Deynze A. E., Autrique E., Sorrells M. E., Lu Y. H., Merlino M., Atkinson M. D. and Leroy P. 1995b. Molecular mapping of wheat-homoeologous group 2. Genome, 38: 516–524.

    Article  PubMed  CAS  Google Scholar 

  • Nelson J. C., Van Deynze A. E., Autrique E., Sorrells M. E., Lu Y. H., Negre S., Bernard M. and Leroy P. 1995c. Molecular mapping of wheat-homoeologous group 3. Genome, 38: 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen H. T., Babu R. C. and Blum A. 1997. Breeding for drought resistance in rice: physiology and molecular genetics consideration. Crop Sci., 37: 1426–1434.

    Article  Google Scholar 

  • Ribaut J. M. and Hoisington D. 1998. Marker-assisted selection: new tools and strategies. Trends in Pl. Sci., 3: 236–239.

    Article  Google Scholar 

  • Ribaut J. M., Edmeades C. O., Perotti E. and Hoisington D. 2001. QTL analyses, MAS results, and perspectives for drought-tolerance improvement in tropical maize. In: Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments, (eds. ) Ribaut J. M. and Pol and D., A Strategic Planning Workshop held at CIMMYT, El Batan, Mexico, 21-25 June (1999) Mexico D. F. : CIMMYT, pp. 131–136.

    Google Scholar 

  • Ribaut J. M., Hu X. Y., Hoisington D. and Gonzalez-de-Leon D. 1997a. Use of STSs and SSRs as rapid and reliable preselection tools in a marker-assisted selection-backcross scheme. Pl. Mol. Biology Reporter, 15: 154–162.

    Article  CAS  Google Scholar 

  • Ribaut J. M., Jiang C., González-de-León D., Edmeades G. O. and Hoisington D. A. 1997b. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Yield components and marker-assisted selection strategies. Theor. Appl. Genet., 94: 887–896.

    Article  Google Scholar 

  • Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P. and Ganal M. W. 1998. A microsatellite map of wheat. Genetics, 149: 1–17.

    Google Scholar 

  • Schachermayr G. M., Messmer M. M., Feuillet C., Winzeler H., Winzeler M. and Keller B. 1995. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet., 90: 982–990.

    Article  CAS  Google Scholar 

  • Schachermayr G. M., Siedler H., Gale M. D., Winzeler H., Winzeler M. and Keller B. 1994. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet., 88: 110–115.

    Article  CAS  Google Scholar 

  • Schena M., Shalon D., Davis R. W. and Brown P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270: 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Shalon D. 1995. “DNA microarrays: A new tool for genetic analysis. ” Ph. D thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Shalon D., Smith S. J. and Brown P. O. 1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Methods, 6: 639–645.

    CAS  Google Scholar 

  • Shinozaki K. and Yamaguchi-Shinozaki K. 1996. Molecular responses to drought and cold stress. Current Opinions in Biotech., 7: 161–167.

    Article  CAS  Google Scholar 

  • Skriver K. and Mundy J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2: 503–512.

    PubMed  CAS  Google Scholar 

  • Sun G. L., Fahima T., Korol A. B., Turpeinen T., Grama A., Ronin Y. I. and Nevo E. 1997. Identification of molecular markers linked to the yrI5 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet., 95: 622–628.

    Article  CAS  Google Scholar 

  • Tarczynski M. and Bohnert H. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259: 508–510.

    Article  PubMed  CAS  Google Scholar 

  • Van Deynze A. E., Dubcovsky J., Gill K. S., Nelson J. C., Sorrells M. E., Dvorák J., Gill B. S., Lagudah E. S., McCouch S. R. and Appels R. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome, 38: 45–59.

    Article  PubMed  CAS  Google Scholar 

  • Van Ginkel M. and Rajaram S. 1993. Breeding for durable disease resistance in wheat: an international perspective. In: Durability of Disease Resistance. (eds. ) Jacobs T. H. and Parlevliet J. E., Kluwer Academic Press. Dordrecht, the Netherlands, pp. 259–272.

    Chapter  Google Scholar 

  • William H. M., Hoisington D., Singh R. P. and González-de-León D. 1997. Detection of quantitative trait loci associated with leaf rust resistance in bread wheat. Genome, 40: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Williams K. J., Fisher J. M. and Langridge P. 1996. Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome, 39: 798–801.

    Article  PubMed  CAS  Google Scholar 

  • Xie D. X., Devos K. M., Moore G. and Gale M. D. 1993. RFLP-based genetic maps of the homoeologous group 5 chromosomes of bread wheat (Triticum aestivum L. ). Theor. Appl. Genet., 87: 70–74.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K. and Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress. Plant Cell, 6: 251–264.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoisington, D. (2004). Application of Biotechnology to Maize and Wheat Improvement. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics