Skip to main content

Magnetic Resonance Tracking of Stem Cells with Iron Oxide Particles

  • Chapter
  • First Online:
Intracellular Delivery

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 5))

  • 1955 Accesses

Abstract

Stem cells transplantation is a promising therapy for numerous diseases where transplanted cells repair or replace damaged host tissue. While their efficacy and optimal delivery is under intense investigation, there lies a pivotal question seeking the whereabouts of the cells after transplantation. Imaging techniques have emerged in recent years, both to enable monitoring of stem cell location in patients and to improve the reliability of animal experimentation. Magnetic resonance imaging (MRI) allows tracking of stem cells tagged with magnetic nanoparticle labels prior to transplantation, but is restricted by the inability of stem cells to incorporate sufficient label. This review addresses the optimisation of stem cell tagging with iron oxide particles to improve MR tracking, alternative cell labelling techniques using gene transfer, and the translational applications of cellular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MRI:

magnetic resonance imaging

ESC:

embryonic stem cells

MSC:

mesenchymal stem cells

Gd-DTPA:

gadolinium diethylenetriaminopentaacetic acid

SPIO:

superparamagnetic iron oxide particles

USPIO:

ultrasmall SPIO

MION:

monocrystalline iron oxide nanocompound

VSOP:

very small superparamagnetic iron oxide particles

AMNP:

anionic magnetic nanoparticle

IV:

intravenously

CLIO:

cross-linked iron oxide particles

Ab:

antibody

MGIO:

microgel iron oxide particles

EPC:

endothelial progenitor cells

PLL:

poly-L-lysine

Tf:

transferrin

TfR:

transferrin receptor

NSC:

neural stem cells

DC:

dendritic cells

CGMP:

clinical grade manufacturing practice

BrdU:

5-bromo-2-deoxyuridine

BBZ:

bis benzamide

SDR:

static dephasing regime

References

  • Ahrens, E. T., Feili-Hariri, M., Xu, H., Genove, G. & Morel, P. A. 2003. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magnetic Resonance in Medicine, 49, 1006–1013.

    PubMed  CAS  Google Scholar 

  • Aigner, F., Pallwein, L., Mitterberger, M., Pinggera, G. M., Mikuz, G., Horninger, W. & Frauscher, F. 2009. Contrast-enhanced ultrasonography using cadence-contrast pulse sequencing techno­logy for targeted biopsy of the prostate. BJU International, 103, 458–463.

    PubMed  Google Scholar 

  • Anderson, S. A., Glod, J., Arbab, A. S., Noel, M., Ashari, P., Fine, H. A. & Frank, J. A. 2005. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood, 105, 420–5.

    PubMed  CAS  Google Scholar 

  • Arbab, A. S., Bashaw, L. A., Miller, B. R., Jordan, E. K., Bulte, J. W. & Frank, J. A. 2003a. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation, 76, 1123–1130.

    PubMed  CAS  Google Scholar 

  • Arbab, A. S., Bashaw, L. A., Miller, B. R., Jordan, E. K., Lewis, B. K., Kalish, H. & Frank, J. A. 2003b. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology, 229, 838–846.

    PubMed  Google Scholar 

  • Arbab, A. S. & Frank, J. A. 2008. Cellular MRI and its role in stem cell therapy. Regen Med, 3, 199–215.

    PubMed  CAS  Google Scholar 

  • Arbab, A. S., Yocum, G. T., Kalish, H., Jordan, E. K., Anderson, S. A., Khakoo, A. Y., Read, E. J. & Frank, J. A. 2004a. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood, 104, 1217–1223.

    PubMed  CAS  Google Scholar 

  • Arbab, A. S., Yocum, G. T., Kalish, H., Jordan, E. K., Anderson, S. A., Khakoo, A. Y., Read, E. J. & Frank, J. A. 2004b. Feridex-protamine sulfate labeling does not alter differentiation of mesenchymal stem cells. Blood, 104, 3412–3413.

    CAS  Google Scholar 

  • Balakumaran, A., Pawelczyk, E., Ren, J., Sworder, B., Chaudhry, A., Sabatino, M., Stroncek, D., Frank, J. A. & Robey, P. G. 2010. Superparamagnetic Iron Oxide Nanoparticles Labeling of Bone Marrow Stromal (Mesenchymal) Cells Does Not Affect Their “Stemness”. PLoS One, 5, e11462.

    PubMed  Google Scholar 

  • Bang, O. Y., Lee, J. S., Lee, P. H. & Lee, G. 2005. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol, 57, 874–82.

    PubMed  Google Scholar 

  • Bazylinski, D. A. & Frankel, R. B. 2004. Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2, 217–30.

    PubMed  CAS  Google Scholar 

  • Bendszus, M., Kleinschnitz, C. & Stoll, G. 2007. Iron-Enhanced MRI in Ischemic Stroke: Intravascular Trapping Versus Cellular Inflammation. Stroke, 38, e12.

    PubMed  Google Scholar 

  • Bennett, K. M., Shapiro, E. M., Sotak, C. H. & Koretsky, A. P. 2008. Controlled Aggregation of Ferritin to Modulate MRI Relaxivity. Biophys. J., 95, 342–351.

    PubMed  CAS  Google Scholar 

  • Berry, C. C., Charles, S., Wells, S., Dalby, M. J. & Curtis, A. S. 2004. The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. International Journal of Pharmaceutics, 269, 211–225.

    PubMed  CAS  Google Scholar 

  • Bowen, C. V., Zhang, X., Saab, G., Gareau, P. J. & Rutt, B. K. 2002. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med, 48, 52–61.

    PubMed  CAS  Google Scholar 

  • Bulte, J. W. & Kraitchman, D. L. 2004. Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol, 5, 567–584.

    PubMed  CAS  Google Scholar 

  • Bulte, J. W., Kraitchman, D. L., Mackay, A. M., Pittenger, M. F., Arbab, A. S., Yocum, G. T., Kalish, H., Jordan, E. K., Anderson, S. A., Khakoo, A. Y., Read, E. J. & Frank, J. A. 2004. Chondro­genic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood, 104, 3410–3413.

    PubMed  CAS  Google Scholar 

  • Burns, T. C., Ortiz-Gonzalez, X. R., Gutierrez-Perez, M., Keene, C. D., Sharda, R., Demorest, Z. L., Jiang, Y., Nelson-Holte, M., Soriano, M. & Nakagawa, Y. 2006. Thymidine Analogs Are Transferred from Prelabeled Donor to Host Cells in the Central Nervous System After Trans­plantation: A Word of Caution. Stem Cells, 24, 1121–1127.

    PubMed  CAS  Google Scholar 

  • Callera, F. & De Melo, C. M. 2007. Magnetic Resonance Tracking of Magnetically Labeled Autologous Bone Marrow CD34+ Cells Transplanted into the Spinal Cord via Lumbar Puncture Technique in Patients with Chronic Spinal Cord Injury: CD34+ Cells’ Migration into the Injured Site. Stem Cells and Development, 16, 461–466.

    PubMed  Google Scholar 

  • Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., Drukker, M., Dylla, S. J., Connolly, A. J. & Chen, X. 2006. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 113, 1005–14.

    PubMed  Google Scholar 

  • Carr, D. H., Brown, J., Bydder, G. M., Steiner, R. E., Weinmann, H. J., Speck, U., Hall, A. S. & Young, I. R. 1984. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. American Journal of Roentgenology, 143, 215–224.

    PubMed  CAS  Google Scholar 

  • Chen, A., Siow, B., Blamire, A. M., Lako, M. & Clowry, G. J. 2010. Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Research, 5, 255–266.

    PubMed  Google Scholar 

  • Cohen, B., Dafni, H., Meir, G., Harmelin, A. & Neeman, M. 2005. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia, 7, 109–17.

    PubMed  CAS  Google Scholar 

  • Cohen, B., Ziv, K., Plaks, V., Israely, T., Kalchenko, V., Harmelin, A., Benjamin, L. E. & Neeman, M. 2007. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med, 13, 498–503.

    PubMed  CAS  Google Scholar 

  • Coyne, T. M., Marcus, A. J., Woodbury, D. & Black, I. B. 2006. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells, 24, 2483–92.

    PubMed  Google Scholar 

  • Cozzi, A., Corsi, B., Levi, S., Santambrogio, P., Albertini, A. & Arosio, P. 2000. Overexpression of Wild Type and Mutated Human Ferritin H-chain in HeLa Cells IN VIVO ROLE OF FERRITIN FERROXIDASE ACTIVITY. Journal of Biological Chemistry, 275, 25122–25129.

    PubMed  CAS  Google Scholar 

  • Dahnke, H. & Schaeffter, T. 2005. Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med, 53, 1202–6.

    PubMed  CAS  Google Scholar 

  • Daldrup-Link, H. E., Rudelius, M., Oostendorp, R. A., Jacobs, V. R., Simon, G. H., Gooding, C. & Rummeny, E. J. 2005. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX1. Academic Radiology, 12, 502–510.

    PubMed  Google Scholar 

  • Daldrup-Link, H. E., Rudelius, M., Oostendorp, R. A., Settles, M., Piontek, G., Metz, S., Rosenbrock, H., Keller, U., Heinzmann, U. & Rummeny, E. J. 2003. Targeting of hemato­poietic progenitor cells with MR contrast agents. Radiology, 228, 760–7.

    PubMed  Google Scholar 

  • De Vries, I., Lesterhuis, W. J., Barentsz, J. O., Verdijk, P., Van, K. J., Boerman, O. C., Oyen, W. J., Bonenkamp, J. J., Boezeman, J. B. & Adema, G. J. 2005. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol, 23, 1407–1413.

    PubMed  Google Scholar 

  • Deans, A. E., Wadghiri, Y. Z., Bernas, L. M., Yu, X., Rutt, B. K. & Turnbull, D. H. 2006. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med, 56, 51–9.

    PubMed  CAS  Google Scholar 

  • Di Marco, M., Sadun, C., Port, M., Guilbert, I., Couvreur, P. & Dubernet, C. 2007. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine, 2, 609–622.

    PubMed  Google Scholar 

  • Fleige, G., Seeberger, F., Laux, D., Kresse, M., Taupitz, M., Pilgrimm, H. & Zimmer, C. 2002. In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol, 37, 482–8.

    PubMed  CAS  Google Scholar 

  • Fontaine, R., Viscogliosi, N., Semmaoui, H., B, F., Lemieux, F., T, M. A., Michaud, J. B., B, P., Cadorette, J. & Pepin, C. M. 2007. Digital signal processing applied to crystal identification in Positron Emission Tomography dedicated to small animals. Nuclear Inst. and Methods in Physics Research, A, 571, 385–388.

    CAS  Google Scholar 

  • Frank, J. A., Miller, B. R., Arbab, A. S., Zywicke, H. A., Jordan, E. K., Lewis, B. K., Bryant, L. H. & Bulte, J. W. 2003. Clinically Applicable Labeling of Mammalian and Stem Cells by Combining Superparamagnetic Iron Oxides and Transfection Agents. Radiology, 228, 480–487.

    PubMed  Google Scholar 

  • Gafni, Y., Turgeman, G., Liebergal, M., Pelled, G., Gazit, Z. & Gazit, D. 2004. Stem cells as vehicles for orthopedic gene therapy. Gene Ther, 11, 417–26.

    PubMed  CAS  Google Scholar 

  • Gao, F., Kar, S., Zhang, J., Qiu, B., Walczak, P., Larabi, M., Xue, R., Frost, E., Qian, Z. & Bulte, J. W. 2007. MRI of intravenously injected bone marrow cells homing to the site of injured arteries. NMR Biomed, 20, 673–81.

    PubMed  Google Scholar 

  • Ghosh, P., Hawrylak, N., Broadus, J., Greenough, W. T. & Lauterbur, P. C. Year. NMR imaging of transplanted iron oxide-labelled cells in the rat brain. In, 1990. 1193.

    Google Scholar 

  • Gilad, A. A., Van Laarhoven, H. W. M., Mcmahon, M. T., Walczak, P., Heerschap, A., Neeman, M., Van Zijl, P. C. M. & Bulte, J. W. M. 2009. Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magnetic Resonance in Medicine, 61, 970–974.

    PubMed  Google Scholar 

  • Gonzalez-Lara, L., Xu, X., Hofstetrova, K., Pniak, A., Chen, Y., Mcfadden, C., Martinez-Santiesteban, F., Rutt, B., Brown, A. & Foster, P. 2010. The Use of Cellular Magnetic Resonance Imaging to Track the Fate of Iron-Labeled Multipotent Stromal Cells after Direct Transplantation in a Mouse Model of Spinal Cord Injury. Molecular Imaging and Biology, 1–10.

    Google Scholar 

  • Gossuin, Y., Roch, A., Muller, R. N. & Gillis, P. 2000. Relaxation induced by ferritin and ferritin-like magnetic particles: The role of proton exchange. Magnetic Resonance in Medicine, 43, 237–243.

    PubMed  CAS  Google Scholar 

  • Grabill, C., Silva, A. C., Smith, S. S., Koretsky, A. P. & Rouault, T. A. 2003. MRI detection of ferritin iron overload and associated neuronal pathology in iron regulatory protein-2 knockout mice. Brain Research, 971, 95–106.

    PubMed  CAS  Google Scholar 

  • Guzman, R., Uchida, N., Bliss, T. M., He, D., Christopherson, K. K., Stellwagen, D., Capela, A., Greve, J., Malenka, R. C., Moseley, M. E., Palmer, T. D. & Steinberg, G. K. 2007. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA, 104, 10211–6.

    PubMed  CAS  Google Scholar 

  • Harrison, P. M. & Arosio, P. 1996. The ferritins: molecular properties, iron storage function and cellular regulation. BBA-Bioenergetics, 1275, 161–203.

    Google Scholar 

  • Harush-Frenkel, O., Debotton, N., Benita, S. & Altschuler, Y. 2007. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochemical and Biophysical Research Communications, 353, 26–32.

    PubMed  CAS  Google Scholar 

  • Heyn, C., Bowen, C. V., Rutt, B. K. & Foster, P. J. 2005. Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med, 53, 312–20.

    PubMed  Google Scholar 

  • Heyn, C., Ronald, J. A., Mackenzie, L. T., Macdonald, I. C., Chambers, A. F., Rutt, B. K. & Foster, P. J. 2006. In Vivo Magnetic Resonance Imaging of Single Cells in Mouse Brain with Optical Validation. Magn Reson Med, 55, 23.

    PubMed  Google Scholar 

  • Hill, J. M., Dick, A. J., Raman, V. K., Thompson, R. B., Yu, Z. X., Hinds, K. A., Pessanha, B. S., Guttman, M. A., Varney, T. R. & Martin, B. J. 2003. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 108, 1009.

    PubMed  Google Scholar 

  • Himmelreich, U., Weber, R., Ramos-Cabrer, P., Wegener, S., Kandal, K., Shapiro, E. M., Koretsky, A. P. & Hoehn, M. 2005. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Mol Imaging, 4, 104–9.

    PubMed  Google Scholar 

  • Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J. & Fleischmann, B. K. 2002. Monitoring of implanted stem cell migration in vivo: A highly resolved in vivo magnetic resonance imaging investigation of experi­mental stroke in rat. Proceedings of the National Academy of Sciences, 99, 16267–16272.

    CAS  Google Scholar 

  • Horwitz, E. M., Prockop, D. J., Gordon, P. L., Koo, W. W., Fitzpatrick, L. A., Neel, M. D., Mccarville, M. E., Orchard, P. J., Pyeritz, R. E. & Brenner, M. K. 2001. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 97, 1227–31.

    PubMed  CAS  Google Scholar 

  • Hunter, R. J. 1995. Foundations of colloid science, Oxford, Clarendon Press.

    Google Scholar 

  • Jendelova, P., Herynek, V., Decroos, J., Glogarova, K., Andersson, B., Hajek, M. & Sykova, E. 2003. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med, 50, 767–76.

    PubMed  CAS  Google Scholar 

  • Jung, C. W. 1995. Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magnetic Resonance Imaging, 13, 675–691.

    PubMed  CAS  Google Scholar 

  • Jung, C. W. & Jacobs, P. 1995. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: Ferumoxides, ferumoxtran, ferumoxsil. Magnetic Resonance Imaging, 13, 661–674.

    PubMed  CAS  Google Scholar 

  • Kadayakkara, D. K. K., Janjic, J. M., Pusateri, L. K., Young, W.-B. & Ahrens, E. T. 2010. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI. Magnetic Resonance in Medicine, 64, 1252–1259.

    PubMed  Google Scholar 

  • Kawaguchi, H., Koiwai, N., Ohtsuka, Y., Miyamoto, M. & Sasakawa, S. 1986. Phagocytosis of latex particles by leucocytes. I. Dependence of phagocytosis on the size and surface potential of particles. Biomaterials, 7, 61–66.

    PubMed  CAS  Google Scholar 

  • Kim, H.-S. Year. Comparison of the Biological Properties of Human Mesenchymal Stem Cells Labeled with Different Iron Oxide Nanoparticles. In, 2008 Nice, France. Poster No. 1071

    Google Scholar 

  • Kleinschnitz, C., Bendszus, M., Frank, M., Solymosi, L., Toyka, K. V. & Stoll, G. 2003. In Vivo Monitoring of Macrophage Infiltration in Experimental Ischemic Brain Lesions by Magnetic Resonance Imaging. Journal of Cerebral Blood Flow & Metabolism, 23, 1356–1361.

    CAS  Google Scholar 

  • Kleinschnitz, C., Sch, A., N, I., Horn, T., Frank, M., Solymosi, L., Stoll, G. & Bendszus, M. 2005. In vivo detection of developing vessel occlusion in photothrombotic ischemic brain lesions in the rat by iron particle enhanced MRI. Journal of Cerebral Blood Flow & Metabolism, 25, 1548–1555

    CAS  Google Scholar 

  • Ko, I. K., Song, H. T., Cho, E. J., Lee, E. S., Huh, Y. M. & Suh, J. S. 2007. In vivo MR imaging of tissue-engineered human mesenchymal stem cells transplanted to mouse: a preliminary study. Ann Biomed Eng, 35, 101–8.

    PubMed  Google Scholar 

  • Kooi, M. E., Cappendijk, V. C., Cleutjens, K., Kessels, A. G., Kitslaar, P., Borgers, M., Frederik, P. M., Daemen, M. & Van, E. J. 2003. Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging. Am Heart Assoc

    Google Scholar 

  • Kostura, L., Kraitchman, D. L., Mackay, A. M., Pittenger, M. F. & Bulte, J. W. 2004. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR in Biomedicine, 17, 513–517.

    PubMed  Google Scholar 

  • Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., Hare, J. M. & Bulte, J. W. 2003. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107, 2290–3.

    PubMed  Google Scholar 

  • Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W. P., Chen, H. H., Fritzges, D. & Izbudak, I. 2005. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112, 1451–61.

    PubMed  Google Scholar 

  • Lai, E. & Van Zanten, J. H. 2001. Monitoring DNA/Poly-l-Lysine Polyplex Formation with Time-Resolved Multiangle Laser Light Scattering. Biophysical Journal, 80, 864–873.

    PubMed  CAS  Google Scholar 

  • Lee, E. S., Bou-Gharios, G., Seppanen, E., Khosrotehrani, K. & Fisk, N. M. 2010a. Fetal Stem Cell Microchimerism: Natural Born Healers or Killers? Molecular Human Reproduction, [Epub ahead of print].

    Google Scholar 

  • Lee, E. S., Chan, J., Shuter, B., Tan, L. G., Chong, M. S. K., Ramachandra, D. L., Dawe, G. S., Ding, J., Teoh, S. H., Beuf, O., Briguet, A., Tam, K. C., Choolani, M. & Wang, S.-C. 2009. Microgel Iron Oxide Nanoparticles For Tracking Human Fetal Mesenchymal Stem Cells Through Magnetic Resonance Imaging. Stem Cells, 27, 1921–1931.

    PubMed  CAS  Google Scholar 

  • Lee, E. S., Shuter, B., Chan, J., Chong, M. S. K., Ding, J., Teoh, S.-H., Beuf, O., Briguet, A., Tam, K. C., Choolani, M. & Wang, S.-C. 2010b. The use of microgel iron oxide nanoparticles in studies of magnetic resonance relaxation and endothelial progenitor cell labelling. Biomaterials, 31, 3296–3306.

    PubMed  CAS  Google Scholar 

  • Lee, H., Lee, E., Kim, K., Jang, N. K., Jeong, Y. Y. & Jon, S. 2006. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc, 128, 7383–9.

    PubMed  CAS  Google Scholar 

  • Lewin, M., Carlesso, N., Tung, C. H., Tang, X. W., Cory, D., Scadden, D. T. & Weissleder, R. 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature biotechnology, 18, 410–414.

    PubMed  CAS  Google Scholar 

  • Liu, G., Molas, M., Grossmann, G. A., Pasumarthy, M., Perales, J. C., Cooper, M. J. & Hanson, R. W. 2001. Biological Properties of Poly-l-lysine-DNA Complexes Generated by Cooperative Binding of the Polycation. Journal of Biological Chemistry, 276, 34379–34387.

    PubMed  CAS  Google Scholar 

  • Mailander, V., Lorenz, M. R., Holzapfel, V., Musyanovych, A., Fuchs, K., Wiesneth, M., Walther, P., Landfester, K. & Schrezenmeier, H. 2008. Carboxylated Superparamagnetic Iron Oxide Particles Label Cells Intracellularly Without Transfection Agents. Molecular Imaging and Biology, 10, 138–146.

    PubMed  Google Scholar 

  • Matuszewski, L., Persigehl, T., Wall, A., Schwindt, W., Tombach, B., Fobker, M., Poremba, C., Ebert, W., Heindel, W. & Bremer, C. 2005. Cell Tagging with Clinically Approved Iron Oxides: Feasibility and Effect of Lipofection, Particle Size, and Surface Coating on Labeling Efficiency. Radiology, 235, 155–161.

    PubMed  Google Scholar 

  • Mendonca, D. M. & Lauterbur, P. C. 1986. Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 3, 328–330.

    Google Scholar 

  • Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E. J. & Daldrup-Link, H. E. 2004. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol, 14, 1851–8.

    PubMed  Google Scholar 

  • Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., Hecker, H., Schaefer, A., Arseniev, L., Hertenstein, B., Ganser, A. & Drexler, H. 2006. Intracoronary Bone Marrow Cell Transfer After Myocardial Infarction: Eighteen Months’ Follow-Up Data From the Randomized, Controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) Trial. Circulation, 113, 1287–1294.

    PubMed  Google Scholar 

  • Mills, P. H., Wu, Y. J., Ho, C. & Ahrens, E. T. 2008. Sensitive and automated detection of iron-oxide-labeled cells using phase image cross-correlation analysis. Magnetic Resonance Imaging

    Google Scholar 

  • Modo, M., Cash, D., Mellodew, K., Williams, S. C., Fraser, S. E., Meade, T. J., Price, J. & Hodges, H. 2002. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage, 17, 803–11.

    PubMed  Google Scholar 

  • Montet-Abou, K., Montet, X., Weissleder, R. & Josephson, L. 2007. Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging, 6, 1–9.

    PubMed  CAS  Google Scholar 

  • Moore, A., Josephson, L., Bhorade, R. M., Basilion, J. P. & Weissleder, R. 2001. Human transferrin receptor gene as a marker gene for MR imaging. Radiology, 221, 244–50.

    PubMed  CAS  Google Scholar 

  • Moore, A., Weissleder, R. & Bogdanov, A. 1997. Uptake of Dextran-Coated Monocrystalline Iron Oxides in Tumor Cells and Macrophages. Journal of Magnetic Resonance Imaging, 7, 1140–1145.

    Google Scholar 

  • Nath, N., Hyun, J., Ma, H. & Chilkoti, A. 2004. Surface engineering strategies for control of protein and cell interactions. Surface Science, 570, 98–110.

    CAS  Google Scholar 

  • Nelson, G. N., Roh, J. D., Mirensky, T. L., Wang, Y., Yi, T., Tellides, G., Pober, J. S., Shkarin, P., Shapiro, E. M., Saltzman, W. M., Papademetris, X., Fahmy, T. M. & Breuer, C. K. 2008. Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo. FASEB J., 22, 3888–3895.

    PubMed  CAS  Google Scholar 

  • Neri, M., Maderna, C., Cavazzin, C., Deidda-Vigoriti, V., Politi, L. S., Scotti, G., Marzola, P., Sbarbati, A., Vescovi, A. L. & Gritti, A. 2008. Efficient In Vitro Labeling of Human Neural Precursor Cells with Superparamagnetic Iron Oxide Particles: Relevance for In Vivo Cell Tracking. Stem Cells, 26, 505–516.

    PubMed  CAS  Google Scholar 

  • Nguyen Huu, S., Oster, M., Uzan, S., Chareyre, F., Aractingi, S. & Khosrotehrani, K. 2007. Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proceedings of the National Academy of Sciences, 104, 1871–1876.

    Google Scholar 

  • Nohroudi, K. A., S.; Berhorn, T.; Addicks, K.; Hoehn, M.; Himmelreich, U. 2010. In Vivo MRI Stem Cell Tracking Requires Balancing of Detection Limit and Cell Viability. Cell Transplantation, 19, 431–441

    PubMed  CAS  Google Scholar 

  • Norman, A. B., Thomas, S. R., Pratt, R. G., Lu, S. Y. & Norgren, R. B. 1992. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res, 594, 279–83.

    PubMed  CAS  Google Scholar 

  • Park, S. J., Leslie, R. W., Huh, S., Kagan, H., Honscheid, K., Burdette, D., Chesi, E., Lacasta, C., Llosa, G. & Mikuz, M. 2007. A prototype of very high-resolution small animal PET scanner using silicon pad detectors. Nuclear Inst. and Methods in Physics Research, A, 570, 543–555.

    CAS  Google Scholar 

  • Pawelczyk, E., Arbab, A. S., Pandit, S., Hu, E. & Frank, J. A. 2006. Expression of transferrin receptor and ferritin following ferumoxides–protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR in Biomedicine, 19, 581–592.

    PubMed  CAS  Google Scholar 

  • Phinney, D. G. & Prockop, D. J. 2007. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells, 25, 2896–902.

    PubMed  Google Scholar 

  • Pintaske, J., Muller-Bierl, B. & Schick, F. 2006. Geometry and extension of signal voids in MR images induced by aggregations of magnetically labelled cells. Phys Med Biol, 51, 4707–4718.

    Google Scholar 

  • Pratten, M. K. & Lloyd, J. B. 1986. Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta, 881, 307–13.

    PubMed  CAS  Google Scholar 

  • Qiu, B., Gao, F., Walczak, P., Zhang, J., Kar, S., Bulte, J. W. & Yang, X. 2007. In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques. J Magn Reson Imaging, 26, 339–43.

    PubMed  Google Scholar 

  • Raynal, I., Prigent, P., Peyramaure, S., Najid, A., Rebuzzi, C. & Corot, C. 2004. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol, 39, 56–63.

    PubMed  CAS  Google Scholar 

  • Reimer, P. & Balzer, T. 2003. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. European Radiology, 13, 1266–1276.

    PubMed  Google Scholar 

  • Reimer, P., Rummeny, E. J., Daldrup, H. E., Balzer, T., Tombach, B., Berns, T. & Peters, P. E. 1995. Clinical results with Resovist: a phase 2 clinical trial. Radiology, 195, 489–96.

    PubMed  CAS  Google Scholar 

  • Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 377, 159–69.

    PubMed  CAS  Google Scholar 

  • Rogers, W. J. & Basu, P. 2005. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis, 178, 67–73.

    PubMed  CAS  Google Scholar 

  • Roser, M., Fischer, D. & Kissel, T. 1998. Surface-modified biodegradable albumin nano-and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. European Journal of Pharmaceutics and Biopharmaceutics, 46, 255–263.

    PubMed  CAS  Google Scholar 

  • Ruehm, S. G., Corot, C., Vogt, P., Kolb, S. & Debatin, J. F. 2001. Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits. Am Heart Assoc

    Google Scholar 

  • Sadan, O., Shemesh, N., Barzilay, R., Bahat-Stromza, M., Melamed, E., Cohen, Y. & Offen, D. 2008. Migration of neurotrophic factors-secreting mesenchymal stem cells towards a quinolinic acid lesion as viewed by MRI. Stem Cells

    Google Scholar 

  • Saini, S., Stark, D. D., Brady, T. J., Wittenberg, J. & Ferrucci, J. J. 1986. Dynamic spin-echo MRI of liver cancer using Gadolinium-DTPA: animal investigation. AJR Am J Roentgenol, 147, 357–62.

    PubMed  CAS  Google Scholar 

  • Saini, S., Stark, D. D., Hahn, P. F., Wittenberg, J., Brady, T. J. & Ferrucci, J. J. 1987. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology, 162, 211–216.

    PubMed  CAS  Google Scholar 

  • Saleh, A., Schroeter, M., Jonkmanns, C., Hartung, H. P., Modder, U. & Jander, S. 2004. In vivo MRI of brain inflammation in human ischaemic stroke. Brain, 127, 1670.

    PubMed  Google Scholar 

  • Sharma, R., Saini, S., Ros, P. R., Hahn, P. F., Small, W. C., De, L. E., Stillman, A. E., Edelman, R. R., Runge, V. M. & Outwater, E. K. 1999. Safety profile of ultrasmall superparamagnetic iron oxide ferumoxtran-10: phase II clinical trial data. Journal of magnetic resonance imaging: JMRI, 9, 291.

    PubMed  CAS  Google Scholar 

  • Shen, T., Weissleder, R., Papisov, M., Bogdanov, J. A. & Brady, T. J. 1993. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med, 29, 599–604.

    PubMed  CAS  Google Scholar 

  • Song, M., Moon, W. K., Kim, Y., Lim, D., Song, I. C. & Yoon, B. W. 2007. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J Radiol, 8, 365–71.

    PubMed  Google Scholar 

  • Stuckey, D. J., Carr, C. A., Martin-Rendon, E., Tyler, D. J., Willmott, C., Cassidy, P. J., Hale, S. J., Schneider, J. E., Tatton, L. & Harding, S. E. 2006. Iron Particles for Noninvasive Monitoring of Bone Marrow Stromal Cell Engraftment into, and Isolation of Viable Engrafted Donor Cells from, the Heart. Stem Cells, 24, 1968–1975.

    PubMed  CAS  Google Scholar 

  • Tabata, Y. & Ikada, Y. 1988. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials, 9, 356–362.

    PubMed  CAS  Google Scholar 

  • Taupitz, M., Schnorr, J., Abramjuk, C., Wagner, S., Pilgrimm, H., Hunigen, H. & Hamm, B. 2000. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging, 12, 905–11.

    PubMed  CAS  Google Scholar 

  • Terrovitis, J. V., Bulte, J. W., Sarvananthan, S., Crowe, L. A., Sarathchandra, P., Batten, P., Sachlos, E., Chester, A. H., Czernuszka, J. T. & Firmin, D. N. 2006. Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng, 12, 2765–75.

    PubMed  CAS  Google Scholar 

  • Thorek, D. L. & Tsourkas, A. 2008. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials, 29, 3583–3590.

    PubMed  CAS  Google Scholar 

  • Toso, C., Vallee, J. P., Morel, P., Ris, F., Demuylder-Mischler, S., Lepetit-Coiffe, M., Marangon, N., Saudek, F., James Shapiro, A. M., Bosco, D. & Berney, T. 2008. Clinical Magnetic Resonance Imaging of Pancreatic Islet Grafts After Iron Nanoparticle Labeling. American Journal of Transplantation, 8, 701–706.

    PubMed  CAS  Google Scholar 

  • Van Den Bos, E. J., Baks, T., Moelker, A. D., Kerver, W., Van, G. R., Van, G. W., Duncker, D. J. & Wielopolski, P. A. 2006. Magnetic resonance imaging of haemorrhage within reperfused myocardial infarcts: possible interference with iron oxide-labelled cell tracking? Eur Heart J, 27, 1620–6.

    PubMed  Google Scholar 

  • Van Den Bos, E. J., Wagner, A., Mahrholdt, H., Thompson, R. B., Morimoto, Y., Sutton, B. S., Judd, R. M. & Taylor, D. A. 2003. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant, 12, 743–56.

    PubMed  Google Scholar 

  • Von Zur Muhlen, C., Von, E. D., Bassler, N., Neudorfer, I., Steitz, B., Petri-Fink, A., Hofmann, H., Bode, C. & Peter, K. 2007. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis, 193, 102–11.

    Google Scholar 

  • Walczak, P., Kedziorek, D. A., Gilad, A. A., Lin, S. & Bulte, J. W. 2005. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med, 54, 769–774.

    PubMed  CAS  Google Scholar 

  • Walczak, P., Zhang, J., Gilad, A. A., Kedziorek, D. A., Ruiz-Cabello, J., Young, R. G., Pittenger, M. F., Van, Z. P., Huang, J. & Bulte, J. W. 2008. Dual-Modality Monitoring of Targeted Intraarterial Delivery of Mesenchymal Stem Cells After Transient Ischemia. Stroke, 39, 1569.

    PubMed  CAS  Google Scholar 

  • Wang, L., Neoh, K.-G., Kang, E.-T., Shuter, B. & Wang, S.-C. 2010. Biodegradable magnetic-fluorescent magnetite/poly(dl-lactic acid-co-[alpha],[beta]-malic acid) composite nanoparticles for stem cell labeling. Biomaterials, 31, 3502–3511.

    PubMed  CAS  Google Scholar 

  • Weissleder, R., Elizondo, G., Wittenberg, J., Lee, A. S., Josephson, L. & Brady, T. J. 1990a. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology, 175, 494–8.

    PubMed  CAS  Google Scholar 

  • Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, E. A. & Basilion, J. P. 2000. In vivo magnetic resonance imaging of transgene expression. Nature medicine, 6, 351.

    PubMed  CAS  Google Scholar 

  • Weissleder, R., Wittenberg, J., Rabito, C. A. & Bengele, H. H. 1990b. Ultrasmall Superparamagnetic Iron Oxide: Characterization of a New Class of Contrast Agents for MR Imaging’. Radiology, 175, 489–493.

    PubMed  CAS  Google Scholar 

  • Wiart, M., Davoust, N., Pialat, J. B., Desestret, V., Moucharaffie, S., Cho, T. H., Mutin, M., Langlois, J. B., Beuf, O. & Honnorat, J. 2007. MRI Monitoring of Neuroinflammation in Mouse Focal Ischemia. Stroke, 38, 131.

    PubMed  Google Scholar 

  • Wilhelm, C., Billotey, C., Roger, J., Pons, J. N., Bacri, J. C. & Gazeau, F. 2003. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials, 24, 1001–1011.

    PubMed  CAS  Google Scholar 

  • Wilhelm, C. & Gazeau, F. 2008. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials

    Google Scholar 

  • Wu, H., Pal, D., O, S. J. & Tai, Y.-C. 2008. A Feasibility Study of a Prototype PET Insert Device to Convert a General-Purpose Animal PET Scanner to Higher Resolution. J Nucl Med, 49, 79–87.

    PubMed  Google Scholar 

  • Yeh, T. C., Zhang, W., Ildstad, S. T. & Ho, C. 1993. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med, 30, 617–25.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Bowen, C. V., Gareau, P. & Rutt, B. K. Year. Quantitative Analysis of SPIO and USPIO Uptake Rate by Macrophages: Effects of Particle Size, Concentration, and Labeling Time. In: Proc. Intl. Soc. Mag. Reson. Med, 2001. 880.

    Google Scholar 

  • Zhu, J., Zhou, L. & Xingwu, F. G. 2006. Tracking Neural Stem Cells in Patients with Brain Trauma. New England Journal of Medicine, 355, 2376.

    PubMed  CAS  Google Scholar 

  • Ziener, C. H., Bauer, W. R. & Jakob, P. M. 2005. Transverse relaxation of cells labeled with magnetic nanoparticles. Magn Reson Med, 54, 702–6.

    PubMed  CAS  Google Scholar 

  • Zurkiya, O., Chan, A. W. S. & Hu, X. 2008. MagA is sufficient for producing magnetic nano­particles in mammalian cells, making it an MRI reporter. Magnetic Resonance in Medicine, 59, 1225–1231.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

EL was supported by project grants from Australian NHMRC, and JC received salary support from Singapore NMRC (CSA/012/2009). Appreciation is expressed to Debbie Ng for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy S. M. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, E.S.M., Rutt, B.K., Fisk, N.M., Wang, SC., Chan, J. (2011). Magnetic Resonance Tracking of Stem Cells with Iron Oxide Particles. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_17

Download citation

Publish with us

Policies and ethics