Skip to main content

Nanoinformatics: Developing Advanced Informatics Applications for Nanomedicine

  • Chapter
  • First Online:
Intracellular Delivery

Abstract

In this chapter we introduce a new informatics field called “Nanoinformatics” based on our own research and on consensus work carried out under the auspices of the US National Cancer Institute (NCI) and the European Commission (EC). Nanoinformatics can be defined as the “use of informatics techniques for analyzing and processing information about the structure and physicochemical characteristics of nanoparticles, their environments, and applications”. Its goal is to use information to accelerate research in nanomedicine. We summarize various areas of research and applications, such as ontologies and semantic search, text mining, imaging, standards, together with an example of the research our group has performed in this field on text mining for extracting information about nanotoxicity from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BI:

Bioinformatics

BMI:

Biomedical Informatics

EC:

European Commission

HIS:

Hospital Information Systems

IMIA:

International Medical Informatics Association

MI:

Medical Informatics

NCI:

National Cancer Institute

NIH:

National Institutes of Health

NIOSH:

National Institute for Occupational Safety and Health

NPO:

NanoParticle Ontology

NSF:

National Science Foundation

NT:

Nanomedicine Taxonomy

ONAMI:

Oregon Nanoscience and Microtechnologies Institute

PMID:

PubMed Identifier

QM/MM:

Quantum Mechanics and Molecular Mechanics

TM:

Text Mining

UMLS:

Unified Medical Language System

References

  • Aerts S, Haeussler M, van Vooren S, Griffith OL, Hulpiau P, Jones SJ, Montgomery SB, Bergman CM; Open Regulatory Annotation Consortium (2008). Text-mining assisted regulatory annotation. Genome Biol, 9(2): R31.

    Article  PubMed  Google Scholar 

  • Alonso-Calvo R, Maojo V, Billhardt H, Martin-Sanchez F, García-Remesal M, Pérez-Rey D. An agent- and ontology-based system for integrating public gene, protein, and disease databases. J Biomed Inform. 2007 Feb;40(1):17–29.

    Article  PubMed  CAS  Google Scholar 

  • Altman RB. Bioinformatics in support of molecular medicine (1998). Proc AMIA Symp. 1998:53–61.

    Google Scholar 

  • Anguita A, Martín L, Crespo J, Tsiknakis M (2008). An ontology-based method to solve query identifier heterogeneity in post-genomic clinical trials. Stud Health Technol Inform 136:3–8.

    PubMed  Google Scholar 

  • Archakov AI, Ivanov YD (2007). Analytical nanobiotechnology for medicine diagnostics. Molecular Biosystems 3, 336–342.

    Article  PubMed  CAS  Google Scholar 

  • Aronson AR (2001). Effective mapping of biomedical text to the UMLS Metathesaurus: the metamap program. Proc AMIA Symp 2001, 17–21.

    Google Scholar 

  • Baker NA, Fritts M, Guccione S, Paik DS, Pappu RV, Patri A, Rubin D, Shaw SY, Thomas DG. Nanotechnology Informatics White Paper. caBIG, National Cancer Institute. February 2009. Non-peer Reviewed Manuscript.

    Google Scholar 

  • Chamundeeswari M, Liji Sobhana SS, Jacob JP, Kumar MG, Devi MP, Sastry TP, Mandal AB (2009). Preparation, characterization and evaluation of biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol Appl Biochem. 2009 Nov 20. [Epub ahead of print].

    Google Scholar 

  • Chang JT, Schütze H, Altman RB (2004). GAPSCORE: finding gene and protein names one word at a time. Bioinformatics, 20(2):216–25.

    Article  PubMed  CAS  Google Scholar 

  • De la Calle G, García-Remesal M, Chiesa S, De la Iglesia D, Maojo V (2009). BIRI: a new approach for automatically discovering and indexing available public bioinformatics resources from the literature. BMC Bioinformatics, 10: 320.

    Article  PubMed  Google Scholar 

  • De la Iglesia D, Maojo V, Chiesa S, Martin-Sanchez F, Kern J, Potamias G, Crespo J, García-Remesal M, Keuchkerian S, Kulikowski C, Mitchell JA (2011). International efforts in nanoinformatics research applied to nanomedicine. Methods Inf Med. 50(1):84–95.

    Google Scholar 

  • Fritts, M. Personal Communication. 2009.

    Google Scholar 

  • García-Remesal M, Maojo V, Crespo J, Billhardt H (2007). Logical schema acquisition from text-based sources for structured and non-structured biomedical sources integration. Proc AMIA Symp 2007, 259–263.

    Google Scholar 

  • García-Remesal M, Cuevas A, López-Alonso V, López-Campos G, de la Calle G, de la Iglesia D, Pérez-Rey D, Crespo J, Maojo V (2010a). A method for automatically extracting infectious disease-related primers and probes from the literature.BMC Bioinformatics, 11:410

    Article  PubMed  Google Scholar 

  • García-Remesal M, Maojo V, Billhardt H, Crespo J (2010b). Integration of relational and textual biomedical sources.A pilot experiment using a semi-automated method for logical schema acquisition. Methods Inf Med, 49(4): 337–348

    Article  PubMed  Google Scholar 

  • García-Remesal M, Cuevas A, Pérez-Rey D, Martín L, Anguita A, de la Iglesia D, de la Calle G, Crespo J, Maojo V (2010c). PubDNA Finder: a web database linking full-text articles to sequences of nucleic acids. Bioinformatics 2010; doi: 10.1093/bioinformatics/btq520 (epub ahead of print).

    Google Scholar 

  • Garten Y, Altman RB (2009). Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text. BMC Bioinformatics 10 Suppl 2.

    Google Scholar 

  • Gordon N, Sagman U (2003). Nanomedicine Taxonomy. Canadian Institute of Health Research & Canadian NanoBusiness Alliance.

    Google Scholar 

  • Jain KK. The Handbook of Nanomedicine. 1st ed. Totowa, New Jersey: Humana; 2008.

    Google Scholar 

  • Khurana E, Nielsen SO, Ensing B. Klein ML. (2006). Self-assembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents. J Phys Chem B 110, 18965–18972

    Article  PubMed  CAS  Google Scholar 

  • Kulikowski CA, Kulikowski CW. Biomedical and health informatics in translational medicine. Methods Inf Med. 2009;48(1):4–10.

    PubMed  CAS  Google Scholar 

  • Lussier YA, Borlawski T, Rappaport D, Liu Y and Friedman C (2006). PhenoGO: assigning phenotypic context to Gene Ontology annotations with natural language processing. Pac Symp Bio, pp 64–75.

    Google Scholar 

  • Mantas J, Ammenwerth E, Demiris G, Hasman A, Haux R, Hersh W, Hovenga E, Lun KC, Marin H, Martin-Sanchez F, Wright G; IMIA Recommendations on Education Task Force. Recommendations of the International Medical Informatics Association(IMIA) on Education in Biomedical and Health Informatics. First Revision. Methods Inf Med. 2010 Jan 7;49(2):105–120.

    Article  PubMed  Google Scholar 

  • Maojo V, Kulikowski CA (2003). Bioinformatics and medical informatics: collaborations on the road to genomic medicine? Journal of the American Medical Informatics Association Nov-Dec 2003;10(6):515–22.

    Article  Google Scholar 

  • Maojo V, Martin-Sanchez F, Kulikowski C, Rodriguez-Paton A, Fritts M (2010). Nanoinformatics and DNA-based computing: catalyzing nanomedicine. Pediatr Res. 2010 May;67(5):481–9.

    Google Scholar 

  • McCusker JP, Phillips JA, Beltrán AG, Finkelstein A, Krauthammer M. (2009). Semantic web data warehousing for caGrid. BMC Bioinformatics 10 Suppl 10:S2

    Article  PubMed  Google Scholar 

  • Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF (2008). Extracting Information from Textual Documents in the Electronic Health Record: a Review of Recent Research.Yearb Med Inform. 2008, 128–44.

    Google Scholar 

  • Mika S, Rost B (2004).NLProt: extracting protein names and sequences from papers. Nucleic Acids Res, 32(suppl 2): W364-W367

    Google Scholar 

  • Rindflesch TC, Fiszman M (2003). The interaction of do- main knowledge and linguistic structure in natural language processing: interpreting hypernymic propositions in biomedical text. J Biomed Inform, 36:462–477.

    Article  PubMed  Google Scholar 

  • Rosse C, Mejino JVL (2003). A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform. 36:478–500.

    Article  PubMed  Google Scholar 

  • Settles B (2005). ABNER: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics, 21(14):3191–3192.

    Article  PubMed  CAS  Google Scholar 

  • Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, OBI Consortium, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S (2007). The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255

    Article  PubMed  CAS  Google Scholar 

  • Tanabe L, Xie N, Thom LH, Matten W, Wilbur WJ (2005). GENETAG: a tagged corpus for gene/protein named entity recognition. BMC Bioinformatics, 6(Suppl 1): S3.

    Article  PubMed  Google Scholar 

  • Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2009). Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci Polym Ed.20(14):2129–2144.

    Google Scholar 

  • Thomas DG, Pappu RV, Baker NA (2010). NanoParticle Ontology for cancer nanotechnology research. J Biomed Inform. 2010 Mar 6. doi:10.1016/j.jbi.2010.03. 001 DOI:dx.doi.org [Epub preprint]

    Google Scholar 

  • Torii M, Hu Z, Wu CH, Liu H (2009). BioTagger-GM: A gene/protein name recognition system. J Am Med Inform Assn, 16(2):247–255.

    Article  Google Scholar 

  • Wren JD, Hildebrand WH, Chandrasekaran S, Melcher U (2005). Markov model recognition and classification of DNA/protein sequences within large text databases. Bioinformatics 21(21): 4046–4053.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been funded, in part, by the ACTION-Grid support action (FP7-ICT-2007-2-224176), the Spanish Ministry of Science and Innovation (FIS/AES PS09/00069 and COMBIOMED-RETICS), the Ibero-NBIC network (CYTED 209RT0366), the European Commission through the ACGT integrated project (FP6-2005-IST-026996), and the Comunidad de Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Maojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maojo, V. et al. (2011). Nanoinformatics: Developing Advanced Informatics Applications for Nanomedicine. In: Prokop, A. (eds) Intracellular Delivery. Fundamental Biomedical Technologies, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1248-5_26

Download citation

Publish with us

Policies and ethics