Skip to main content

Ecohydrology and Biogeochemistry of the Rhizosphere in Forested Ecosystems

  • Chapter
  • First Online:
Forest Hydrology and Biogeochemistry

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

The rhizosphere, defined as the narrow zone within the soil centered on the root–soil interface, is a hotspot for biogeochemical cycling within the soil. In this chapter, we focus on three rhizosphere mechanisms that differentiate the ecohydrological and biogeochemical processes characteristic of the rhizosphere from those of bulk soil. These are (1) double-funneling of stemflow into root-induced preferential flow pathways; (2) hydraulic redistribution (HR) of soil water by roots from wetter to drier soil zones; and (3) CO2 dynamics of the rhizosphere. We follow with several examples of external influences on the ecohydrology of the rhizosphere. Finally, we present suggestions for future research directions for advancing our understanding of ecohydrology and biogeochemistry of the rhizosphere, and discuss global change issues as they relate to the rhizosphere of forested ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, the term “bulk soil” is used to describe soil in the area outside of the rhizosphere but still within the rooting depth.

References

  • Allaire SE, Roulier S, Cessna AJ (2009) Quantifying preferential flow in soils: a review of different techniques. J Hydrol 378:179–204

    Article  Google Scholar 

  • Baker IT, Prihodko L, Denning AS et al (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res Biogeosci 113:1. doi:10.1029/2007JG000644

    Google Scholar 

  • Butler J (1982) Carbon dioxide equilibria and their applications. Addison-Wesley, Reading

    Google Scholar 

  • Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Ann Rev Ecol Evol Syst 37:459–488

    Article  Google Scholar 

  • Chang SC, Matzner E (2000) The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol Process 14:135–144

    Article  Google Scholar 

  • Chapin FS, Ruess RW (2001) Carbon cycle: the roots of the matter. Nature 411:749–752

    Article  Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Academic Press, New York, pp 31–56

    Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Article  Google Scholar 

  • Conrad R, Smith KA (1995) Soil microbial processes and the cycling of atmospheric trace gases [and discussion]. Philos Trans Phys Sci Eng 351:219–230

    Article  Google Scholar 

  • Darrah PR, Jones DL, Kirk GJD, Roose T (2006) Modelling the rhizosphere: a review of methods for ‘upscaling’ to the whole-plant scale. Euro J Soil Sci 57(1):13–25

    Google Scholar 

  • De Schrijver A, Geudens G, Augusto L et al (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–674

    Article  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65

    Article  Google Scholar 

  • Doerr SH, Ritsema CJ, Dekker LW et al (2007) Water repellence of soils: new insights and emerging research needs. Hydrol Process 21:2223–2228

    Article  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC et al (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16

    Article  Google Scholar 

  • Fiedler S, Höll BS, Jungkunst HF (2006) Discovering the importance of the lateral CO2 transport from a temperate spruce forest. Sci Total Environ 368:909–915

    Article  Google Scholar 

  • Gedney N, Cox PM, Betts RA et al (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838

    Article  Google Scholar 

  • Gerten D, Rost S, von Bloh W et al (2008) Causes of change in 20th century global river discharge. Geophys Res Lett 35:L20405. doi:10.1029/2008GL035258

    Article  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Euro J Soil Sci 57:2–12

    Article  Google Scholar 

  • Guswa AJ (2008) The influence of climate on root depth: a carbon cost-benefit analysis. Water Resour Res 44:W02427

    Article  Google Scholar 

  • Hallett PD, Gordon DC, Bengough AG (2003) Plant influence on rhizosphere hydraulic properties: direct measurements using a miniaturized infiltrometer. New Phytol 157:597–603

    Article  Google Scholar 

  • Hanson P, Edwards N, Garten CJ et al (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  Google Scholar 

  • Herron PM, Gage DJ, Cardon ZG (2010) Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Environ 33:199–210

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und probleme auf dem gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der gründüngung und Brache. Arb Deitsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hinsinger P, Marschner P (2006) Rhizosphere – perspectives and challenges – a tribute to Lorenz Hiltner 12–17 September 2004 – Munich, Germany. Plant Soil 283:vii–viii

    Article  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D et al (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  Google Scholar 

  • Hughes JK, Hodge A, Fitter AH et al (2008) Mycorrhizal respiration: implications for global scaling relationships. Trends Plant Sci 13:583–588

    Article  Google Scholar 

  • Hultine KR, Williams DG, Burgess SSO et al (2003) Contrasting patterns of hydraulic redistribution in three desert phreatophytes. Oecologia 135:167–175

    Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  Google Scholar 

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Euro J Soil Sci 58:523–546

    Article  Google Scholar 

  • Jarvis P, Rey A, Petsikos C et al (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940

    Google Scholar 

  • Jassal RS, Black TA, Drewitt GB et al (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 concentrations and CO2 efflux from a forest floor. Ag For Meteorol 124:219–236

    Article  Google Scholar 

  • Johnson MS, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. EcoScience 13:324–333

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Steenhuis TS et al (2005) Spatial and temporal variability of soil water repellency of Amazonian pastures. Aust J Soil Res 43:319–326

    Article  Google Scholar 

  • Johnson MS, Weiler M, Couto EG et al (2007) Storm pulses of dissolved CO2 in a forested headwater Amazonian stream explored using hydrograph separation. Water Resour Res 43:W11201

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ et al (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401

    Article  Google Scholar 

  • Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    Article  Google Scholar 

  • Jost G, Heuvelink GBM, Papritz A (2005) Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128:258–273

    Article  Google Scholar 

  • Keim RF, Skaugset AE, Weiler M (2005) Temporal persistence of spatial patterns in throughfall. J Hydrol 314:263–274

    Article  Google Scholar 

  • Keim RF, Weiler M, Jost G et al (2008) Consequences of spatiotemporal redistribution of precipitation by vegetation for hillslope and runoff processes. Eos transactions AGU 89: Fall meeting supplement, Abstract H14A-03

    Google Scholar 

  • Laurance W, Oliveira A, Laurance S et al (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171–174

    Article  Google Scholar 

  • Lee JE, Oliveira RS, Dawson TE et al (2005) Root functioning modifies seasonal climate. Proc Natl Acad Sci U S A 102:17576–17581

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    Article  Google Scholar 

  • Levia DF, Underwood SJ (2004) Snowmelt induced stemflow in northern hardwood forests: a theoretical explanation on the causation of a neglected hydrological process. Adv Water Res 27:121–128

    Article  Google Scholar 

  • Levia D, Keim RF, Carlyle-Moses DE (2011) Throughfall and stemflow in wooded ecosystems. In: Levia D, Carlyle-Moses D, Tanaka T (eds) Forest hydrology and biogeochemistry: synthesis of research and future directions. Springer, New York

    Google Scholar 

  • Liang W-L, Ki K, Mizuyama T (2009) A three-dimensional model of the effect of stemflow on soil water dynamics around a tree on a hillslope. J Hydrol 366:62–75

    Article  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora – the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Luo LF, Lin H, Halleck P (2008) Quantifying soil structure and preferential flow in intact soil using x-ray computed tomography. Soil Sci Soc Am J 72:1058–1069

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  Google Scholar 

  • Neumann G, George T, Plassard C (2009) Strategies and methods for studying the rhizosphere – the plant science toolbox. Plant Soil 321:431–456

    Article  Google Scholar 

  • Ogden CB, vanEs HM, Schindelbeck RR (1997) Miniature rain simulator for field measurement of soil infiltration. Soil Sci Soc Am J 61:1041–1043

    Article  Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO et al (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363

    Article  Google Scholar 

  • Phillips RP, Bernhardt ES, Schlesinger WH (2009) Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol 29:1513–1523

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P et al (2007) Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc Natl Acad Sci U S A 104:15242–15247

    Article  Google Scholar 

  • Renée Brooks J, Barnard HR, Coulombe R et al (2010) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat Geosci 3:100–104

    Article  Google Scholar 

  • Richter DD, Markewitz D (1995) How deep is soil? BioScience 45:600–609

    Article  Google Scholar 

  • Richter DD, Oh N-H, Fimmen R et al (2007) The rhizosphere and soil formation. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Academic Press, New York, pp 179–200

    Google Scholar 

  • Scheu S, Albers D, Alphei J et al (2003) The soil fauna community in pure and mixed stands of beech and spruce of different age: trophic structure and structuring forces. Oikos 101:225–238

    Article  Google Scholar 

  • Schume H, Jost G, Hager H (2004) Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol 289:258–274

    Article  Google Scholar 

  • Taniguchi M, Tsujimura M, Tanaka T (1996) Significance of stemflow in groundwater recharge.1. Evaluation of the stemflow contribution to recharge using a mass balance approach. Hydrol Process 10:71–80

    Article  Google Scholar 

  • Wang Z, Lu J, Wu L et al (2002) Visualizing preferential flow paths using ammonium carbonate and a pH indicator. Soil Sci Soc Am J 66:347–351

    Article  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR et al (2005) Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Ag For Meteorol 130:39–58

    Article  Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC et al (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    Article  Google Scholar 

  • Weiler M, McDonnell JJ (2007) Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour Res 43:W03403. doi:10.1029/2006WR004867

    Article  Google Scholar 

  • Wessolek G, Schwarzel K, Greiffenhagen A et al (2008) Percolation characteristics of a water-repellent sandy forest soil. Euro J Soil Sci 59:14–23

    Google Scholar 

  • Whalley WR, Riseley B, Leeds-Harrison PB et al (2005) Structural differences between bulk and rhizosphere soil. Euro J Soil Sci 56:353–360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Johnson, M.S., Jost, G. (2011). Ecohydrology and Biogeochemistry of the Rhizosphere in Forested Ecosystems. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_24

Download citation

Publish with us

Policies and ethics