Skip to main content

Technological Tools and Design of New Chemical Processes

  • Chapter
  • First Online:
Green Approaches To Asymmetric Catalytic Synthesis

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST,volume 4))

  • 591 Accesses

Abstract

Although their impact on enantioselectivity is rather limited, technological tools can provide increased productivity with simultaneous energy and time savings. Under microwave irradiation as non-conventional heating source marked rate acceleration has been evidenced in many cases and continuous-flow reactors, among which microreactors display unique features in fast heat and mass exchange, have led to more prolonged catalyst life, reduction of solvent waste and simplification of workup procedures. In the context of the design of new chemical processes, multicomponent reactions or cascade sequences offer high potentiality in the construction of complex molecules from simple precursors in a single step, so avoiding the costly protection/deprotection procedures and purification of intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kobayashi S, Sugiura M (2006) Adv Synth Catal 348:1496–1504

    Article  CAS  Google Scholar 

  2. Miao W, Chan TH (2006) Acc Chem Res 39:897–908

    Article  CAS  Google Scholar 

  3. Zhang W (2009) Chem Rev 109:749–795

    Article  CAS  Google Scholar 

  4. Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Org Proc Res Dev 9:516–518

    Article  CAS  Google Scholar 

  5. CaddicK S, Fitzmaurice R (2009) Tetrahedron 65:3325–3355

    Article  CAS  Google Scholar 

  6. Kappe CO, Stadler A (2005) In: Mannhold R, Kubinyi H, Folkers G (eds) Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  7. Santagada V, Frecentese F, Perissutti E, Favretto L, Caliendo G (2004) QSAR Comb Sci 23:919–944

    Article  CAS  Google Scholar 

  8. Mavandadi F, Pilotti A (2006) Drug discovery today 11:165–174

    Article  CAS  Google Scholar 

  9. Strauss CR, Varma RS (2006) In: Larhed M, Olofsson K (eds) Microwave methods in organic synthesis. Top Curr Chem, vol 266. Springer, Berlin, Heidelberg, p 199

    Google Scholar 

  10. Perreux L, Loupy A (2001) Tetrahedron 57:9199–9223

    Article  CAS  Google Scholar 

  11. de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Chem Soc Rev 34:164–178

    Article  Google Scholar 

  12. Leadbeater NE, Pillsbury SJ, Shananan E, Williams VA (2005) Tetrahedron 61:3565–3585

    Article  CAS  Google Scholar 

  13. Kaiser NFK, Bremberg U, Larhed M, Moberg C, Hallberg   (2000) J Organomet Chem 603:2–5

    Article  CAS  Google Scholar 

  14. Genov M, Salas G, Espinet P (2008) J Organomet Chem 693:2017–2020

    Article  CAS  Google Scholar 

  15. Braga AL, Paixão MW, Westermann B, Schneider PH, Wessjohann LA (2008) J Org Chem 73:2879–2882

    Article  CAS  Google Scholar 

  16. Almansa R, Guijarro D, Yus M (2008) Tetrahedron: Asymmetry 19:1376–1380

    Article  CAS  Google Scholar 

  17. Genov M, Almorin A, Espinet P (2007) Tetrahedron: Asymmetry 18:625–627

    Article  CAS  Google Scholar 

  18. Rodriguez B, Bolm C (2006) J Org Chem 71:2888–2891

    Article  CAS  Google Scholar 

  19. Hao WJ, Jiang B, Tu SJ, Cao XD, Wu SS, Yan S, Zhang XG, Han ZG, Shi F (2009) Org Biomol Chem 7:1410–1414

    Article  CAS  Google Scholar 

  20. Hosseini M, Stiasni N, Barbieri V, Kappe OC (2007) J Org Chem 72:1417–1424

    Article  CAS  Google Scholar 

  21. Mossé S, Alexakis A (2006) Org Lett 8:3577–3580

    Article  Google Scholar 

  22. Landge SM, TöröK B (2009) Catal Lett 131:432–439

    Article  CAS  Google Scholar 

  23. Wiles C, Watts P (2008) Eur J Org Chem 10:1655–1671

    Google Scholar 

  24. Wegner J, Ceylan S, Kirschning A (2011) Chem Commun 47:4583–4592

    Article  CAS  Google Scholar 

  25. Kirschning A, Solodenko W, Mennecke K (2006) Chem Eur J 12:5972–5990

    Article  CAS  Google Scholar 

  26. Hodge P (2005) Ind Eng Chem Res 44:8542–8553

    Article  CAS  Google Scholar 

  27. Shi L, Wang X, Sandoval CA, Wang Z, Li H, Wu J, Yu L, Ding K (2009) Chem Eur J 15:9855–9867

    Article  CAS  Google Scholar 

  28. Irfan M, Glasnov TN, Kappe CO (2011) Chem Sus Chem 4:300–316

    CAS  Google Scholar 

  29. Mak XY, Laurino P, Seeberger PH (2009) Beil J Org Chem doi: 10.3762/bjoc.5.19

  30. Pericàs MA, Herrerìas CI, Solà L (2008) Adv Synth Catal 350:927–932

    Article  Google Scholar 

  31. Rolland J, Cambeiro XC, Rodriguez-Escrich C, Pericàs MA (2009) Beil J Org Chem doi: 10.3762/bjoc.5.56

  32. Hird N, Hughes I, Hunter D, Morrison MGJT, Sherrington DC, Stevenson L (1999) Tetrahedron 55:9575–9584

    Article  CAS  Google Scholar 

  33. Kunz U, Schönfeld H, Solodenko W, Jas G, Kirschning A (2005) Ind Eng Chem Res 44:8458–8467

    Article  CAS  Google Scholar 

  34. Burguete MI, Cornejo A, Garcìa-Verdugo E, Gil MJ, Luis SV, Mayoral JA, Martinez-Merino V, Sokolova M (2007) J Org Chem 72:4344–4350

    Article  CAS  Google Scholar 

  35. Heerbeek Van, Kmer PCJ, van Leeuwen PWNM, Reek JNH (2002) Chem Rev 102:3717–3756

    Article  Google Scholar 

  36. Wöltinger J, Bommarius AS, Drauz K, Wandrey C (2001) Org Process Res Dev 5:241–248

    Article  Google Scholar 

  37. Müller C, Nijkamp MG, Vogt (2005) Eur J Inorg Chem 4011-4021

    Google Scholar 

  38. Beigi M, Haag R, Liese A (2008) Adv Synth Catal 350:919–925

    Article  CAS  Google Scholar 

  39. Watts P, Haswell SJ (2005) Chem Soc Rev 34:235–246

    Article  CAS  Google Scholar 

  40. Geyer K, Codée JDC, Seeberger PH (2006) Chem Eur J 12:8434–8442

    Article  CAS  Google Scholar 

  41. Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007) Chem Rev 107:2300–2318

    Google Scholar 

  42. Brandner JJ (2008) In: Wirth T (ed) Microreactors in organic synthesis and catalysis. Wiley-VCH, Weinheim, p 1

    Google Scholar 

  43. Frank T In: Wirth T (ed) Microreactors in organic synthesis and catalysis. Wiley-VCH, Weinheim, p 19

    Google Scholar 

  44. Alamé M, Schweich D, Pouteau P, Delattre C, de Bellefon C (2008) Lab Chip 8:814–817

    Article  Google Scholar 

  45. Tomida Y, Nagaki A, Yoshida J (2011) J Am Chem Soc 133:3744–3777

    Article  CAS  Google Scholar 

  46. Abdallah R, Fumey B, Meille V, de Bellefon C (2007) Catal Today 125:34–39

    Article  CAS  Google Scholar 

  47. de Bellefon C, Pestre N, Lamouille T, Grenouillet P, Hessel V (2003) Adv Synth Catal 345:190–193

    Article  Google Scholar 

  48. Jähnisch K, Hessel V, Löwe H, Baerns M (2004) Angew Chem Int Ed 43:406–446

    Article  Google Scholar 

  49. Brandt JC, Wirth T (2009) In: Benaglia M (ed) Recoverable and recyclable catalysts. Wiley, New York, p 411

    Google Scholar 

  50. Frost C, Mutton L (2010) Green Chem 12:1687–1703

    Article  CAS  Google Scholar 

  51. Cukalovic A, Monbaliu JCMR, Stevens CV (2010) Top Heterocycl Chem 23:161–198

    Article  CAS  Google Scholar 

  52. Jönsson C, Lundgren S, Haswell SJ, Moberg C (2004) Tetrahedron 60:10515–10520

    Article  Google Scholar 

  53. de Bellefon C, Lamouille T, Pestre N, Bornette F, Pennemann H, Neumann F, Hessel V (2005) Catal Today 110:179–187

    Article  Google Scholar 

  54. Odedra A, Seeberger PH (2009) Angew Chem Int Ed 48:2699–2702

    Article  CAS  Google Scholar 

  55. France S, Bernstein D, Weatherwax A, Lectka T (2005) Org Lett 7:3009–3012

    Article  CAS  Google Scholar 

  56. Que L Jr, Tolman BW (2008) Nature 455:333–340

    Article  CAS  Google Scholar 

  57. Piera J, Bäckvall JE (2008) Angew Chem Int Ed 47:3506–3523

    Google Scholar 

  58. De Faveri G, Ilyashenko G, Watkinson M (2011) Chem Soc Rev 40:1722–1760

    Google Scholar 

  59. Bataille CJR, Donohoe TJ (2011) Chem Soc Rev 40:114–128

    Google Scholar 

  60. Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  61. Ramón DJ, Yus M (2005) Angew Chem Int Ed 44:1602–1634

    Article  Google Scholar 

  62. Tietze LF (1996) Chem Rev 96:115–136

    Article  CAS  Google Scholar 

  63. Wasilke JC, Obrey SJ, Baker RT, Bazan GC (2005) Chem Rev 105:1001–1020

    Article  CAS  Google Scholar 

  64. Nicolau KC, Edmonds DJ, Bulger PG (2006) Angew Chem Int Ed 45:7134–7186

    Article  Google Scholar 

  65. Nicolau KC, Chen JS (2009) Chem Soc Rev 38:2993–3009

    Article  Google Scholar 

  66. Grondal C, Jeanty M, Enders D (2010) Nature Chem 2:167–178

    Article  CAS  Google Scholar 

  67. Pellissier H (2006) Tetrahedron 62:2143–2173

    Article  CAS  Google Scholar 

  68. Enders D, Grondal C, Hüttl RM (2007) Angew Chem Int Ed 46:1570–1581

    Google Scholar 

  69. Huang Y, Walij AM, Larsen CH, MacMillan DWC (2005) J Am Chem Soc 127:15051–15053

    Article  CAS  Google Scholar 

  70. Enders D, Hüttl RM, Grondal C, Raabe G (2006) Nature 441:861–863

    Article  CAS  Google Scholar 

  71. Enders D, Hüttl RM, Runsink J, Raabe G, Wendt B (2007) Angew Chem Int Ed 46:467–469

    Article  CAS  Google Scholar 

  72. Carlone A, Cabrera S, Marigo M, Jørgensen KA (2007) Angew Chem Int Ed 46:1101–1104

    Google Scholar 

  73. Hayashi Y, Okano T, Aratake S, Hazelard D (2007) Angew Chem Int Ed 46:4922–4925

    Article  CAS  Google Scholar 

  74. Enders D, Wang C, Bats JW (2008) Angew Chem Int Ed 47:7539–7542

    Article  CAS  Google Scholar 

  75. Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y (2006) Tetrahedron 62:365–374

    Article  CAS  Google Scholar 

  76. Zhou J, List B (2007) J Am Chem Soc 129:7498–7499

    Article  CAS  Google Scholar 

  77. Tietze LF, Sommer KM, Zinngrebe J, Stecker F (2005) Angew Chem Int Ed 44:257–259

    Article  CAS  Google Scholar 

  78. Zhou J (2010) Chem Asian J 5:422–434

    Article  CAS  Google Scholar 

  79. Dijk EW, Panella L, Pinho P, Naasz R, Meetsma A, Minnaard AJ, Feringa BL (2004) Tetrahedron 60:9687–9693

    Article  CAS  Google Scholar 

  80. Onodera G, Nishibayashi Y, Uemura S (2006) Angew Chem Int Ed 45:3819–3822

    Article  CAS  Google Scholar 

  81. Shimada Y, Miyake Y, Matsuzawa H, Nishibayashi Y (2007) Chem Asian J 2:393–396

    Article  CAS  Google Scholar 

  82. Trost BM, Machacek MR, Faulk BD (2006) J Am Chem Soc 128:6745–6754

    Google Scholar 

  83. Simmons B, Walji AM, MacMillan DWC (2009) Angew Chem Int Ed 48:4349–4353

    Article  CAS  Google Scholar 

  84. Lathrop SP, Rovis T (2009) J Am Chem Soc 131:13628–13630

    Article  CAS  Google Scholar 

  85. Chi Y, Scroggins ST, Fréchet JMJ (2008) J Am Chem Soc 130:6322–6323

    Article  CAS  Google Scholar 

  86. Scroggins ST, Chi Y, Fréchet JMJ (2010) Angew Chem Int Ed 49:2393–2396

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Patti .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Angela Patti

About this chapter

Cite this chapter

Patti, A. (2011). Technological Tools and Design of New Chemical Processes. In: Green Approaches To Asymmetric Catalytic Synthesis. SpringerBriefs in Molecular Science(), vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1454-0_4

Download citation

Publish with us

Policies and ethics