Skip to main content

Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches

  • Chapter
Vibration and Structural Acoustics Analysis

Abstract

This chapter proposes a synthesis of different new methodologies for developing a distributed, integrated shunted piezo composite for beams and plates applications able to modify the structural vibro acoustical impedance of the passive supporting structure so as to absorb or reflect incidental power flow. This design implements tailored structural responses, through integrated passive and active features, and offers the potential for higher levels of vibration isolation as compared to current designs. Novel active and passive shunting configurations will be investigated to reduce vibrations such as distributed Resistance Inductance and Resistance with negative Capacitance circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnes, G.S.: Active/passive piezoelectric vibration suppression. In: Johnson, C.D. (ed.) Proc. SPIE, vol. 2193, pp. 24–34 (1994)

    Google Scholar 

  2. Banerjee, J.R., Sobey, A.J.: Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. Int. J. Solids Struct. 42(8), 2181–2197 (2005)

    Article  Google Scholar 

  3. Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling Estimation and Control. Masson and Wiley (1996)

    Google Scholar 

  4. Beck, B., Cunefare, K.A., Ruzzene, M.: Broadband vibration suppression assessment of negative impedance shunts. In: Proceedings of ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS08), vol. 1, pp. 491–500 (2008)

    Google Scholar 

  5. Becker, J., Fein, O., Maess, M., Gaul, L.: Finite element-based analysis of shunted piezoelectric structures for vibration damping. Comput. Struct. 84(31–32), 2340–2350 (2006)

    Article  Google Scholar 

  6. Behrens, S., Fleming, A.J., Moheimani, S.O.R.: New method for multiple-mode shunt damping of structural vibration using a single piezoelectric transducer. In: Inman, D. (ed.) Smart Structures and Materials 2001: Damping and Isolation. Proc. SPIE, vol. 4331, pp. 239–250 (2001)

    Chapter  Google Scholar 

  7. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76(1–3), 347–363 (2000)

    Article  Google Scholar 

  8. Bernadou, M., Haenel, C.: Modelisation and numerical approximation of piezoelectric thin shell. Part II: approximation by finite element methods and numerical experiments. Comput. Methods Appl. Mech. Eng. 192(37–38), 4045–4073 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1946)

    MATH  Google Scholar 

  10. Casadei, F., Ruzzene, M., Beck, B., Cunefare, K.: Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches. In: Proceedings of SPIE, vol. 7288, 72881J (2009)

    Google Scholar 

  11. Casadei, F., Dozio, L., Ruzzene, M., Cunefare, K.: Periodic shunted arrays for the control of noise radiation in an enclosure. J. Sound Vib. 329(18), 3632–3646 (2010)

    Article  Google Scholar 

  12. Casadei, F., Ruzzene, M., Dozio, L., Cunefare, K.A.: Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Mater. Struct. 19(1), 13 (2010)

    Article  Google Scholar 

  13. Chevallier, G., Ghorbel, S., Benjeddou, A.: A benchmark for free vibration and effective coupling of thick piezoelectric smart structures. Smart Mater. Struct. 17(6), 11 (2008)

    Article  Google Scholar 

  14. Collet, M.: Shape optimization of piezoelectric sensors dealing with spill-over instabilities IEEE Trans. Control Syst. Technol. 9(4), 654–663 (2001)

    Article  MathSciNet  Google Scholar 

  15. Collet, M., Cunefare, K.A.: Modal synthesis and dynamical condensation methods for accurate piezoelectric systems impedance computation. J. Intell. Mater. Syst. Struct. 19(11), 1251–1269 (2008)

    Article  Google Scholar 

  16. Collet, M., Walter, V., Delobelle, P.: Active damping of a micro-cantilever piezo-composite beam. J. Sound Vib. 260(3), 453–476 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Collet, M., Cunefare, K.A., Ichchou, M.N.: Wave motion optimization in periodically distributed shunted piezocomposite beam structures. J. Intell. Mater. Syst. Struct. 20(7), 787–808 (2009)

    Article  Google Scholar 

  18. Corr, L.R., Clark, W.W.: Comparison of low frequency piezoelectric switching shunt techniques for structural damping. Smart Mater. Struct. 11(3), 370–376 (2002)

    Article  Google Scholar 

  19. Crawley, E.F.: Intelligent structures for aerospace: a technology overview and assessment. AIAA J. 32(8), 1689–1699 (1994)

    Article  Google Scholar 

  20. Cross, C.J., Fleeter, S.: Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations. Smart Mater. Struct. 11(2), 239–248 (2002)

    Article  Google Scholar 

  21. Cunefare, K.A.: Negative capacitance shunts for vibration suppression: wave based tuning and reactive input power. In: Proceedings of Active 2006, Adelaide, Australia (2006)

    Google Scholar 

  22. dell’Isola, F., Maurini, C., Porfiri, M.: Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Mater. Struct. 13(2), 299–308 (2004)

    Article  Google Scholar 

  23. Denke, P.H., Eide, G.R., Pickard, J.: Matrix difference equation analysis of vibrating periodic structures. AIAA J. 13(2), 160–166 (1975)

    Article  Google Scholar 

  24. Duhamel, D., Mace, B.R., Brennan, M.J.: Finite element analysis of the vibrations of waveguides and periodic structures. J. Sound Vib. 294(1–2), 205–220 (2006)

    Article  Google Scholar 

  25. Fernandes, A., Pouget, J.: Analytical and numerical modelling of laminated composites with piezoelectric elements. J. Intell. Mater. Syst. Struct. 15(9–10), 753–761 (2004)

    Article  Google Scholar 

  26. Fleming, A.J., Belirens, S., Moheimani, S.O.R.: Synthetic impedance for implementation of piezoelectric shunt-damping circuits. Electron. Lett. 36(18), 1525–1526 (2000)

    Article  Google Scholar 

  27. Fleming, A.J., Behrens, S., Moheimani, S.O.R.: Reducing the inductance requirements of piezoelectric shunt damping systems. Smart Mater. Struct. 12(1), 57–64 (2003)

    Article  Google Scholar 

  28. Fleming, A.J., Moheimani, S.O.R.: Improved current and charge amplifiers for driving piezoelectric loads, and issues in signal processing design for synthesis of shunt damping circuits. J. Intell. Mater. Syst. Struct. 15(2), 77–92 (2004)

    Article  Google Scholar 

  29. Forward, R.L.: Electromechanical transducer-coupled mechanical structure with negative capacitance compensation circuit. United States Patent 4158787, 1979

    Google Scholar 

  30. Fukada, E., Date, M., Kimura, K.: Sound isolation by piezoelectric polymer films connected with negative capacitance circuits. In: Proceedings of 11th International Symposium on Electrets, vol. 1, pp. 223–226 (2002)

    Chapter  Google Scholar 

  31. Fuller, C.R., Fahy, F.J.: Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid. J. Sound Vib. 81(4), 501–518 (1982)

    Article  Google Scholar 

  32. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1991)

    Google Scholar 

  33. Ha, S.K.: Finite element analysis of sandwich plates: an overview. Comput. Struct. 37(1), 1–21 (1990)

    Article  Google Scholar 

  34. Hac, A., Liu, L.: Sensor and actuator location in motion control of flexible structures. J. Sound Vib. 167(2), 239–261 (1993)

    Article  MATH  Google Scholar 

  35. Hagood, N.W., von Flotow, A.H.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  Google Scholar 

  36. Houillon, L., Ichchou, M.N., Jezequel, L.: Wave motion in thin-walled structures. J. Sound Vib. 281(3–5), 483–507 (2005)

    Article  Google Scholar 

  37. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127(1–4), 387–401 (1995)

    Article  MATH  Google Scholar 

  38. Hurlebaus, S., Gaul, L.: Smart structure dynamics. Mech. Syst. Signal Process. 20(2), 255–281 (2006)

    Article  Google Scholar 

  39. Ichchou, M.N., Akrout, S., Mencik, J.M.: Guided waves group and energy velocities via finite elements. J. Sound Vib. 305(4–5), 931–944 (2007)

    Article  Google Scholar 

  40. Kogl, M., Bucalem, M.L.: Analysis of smart laminates using piezoelectric mitc plate and shell elements. Comput. Struct. 83(15–16), 1153–1163 (2005)

    Article  Google Scholar 

  41. Lee, C.K.: Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I. J. Acoust. Soc. Am. 87(3), 1144–1157 (1990)

    Article  Google Scholar 

  42. Lee, C.K., Moon, F.C.: Laminated piezopolymer plates for torsion and bending sensors and actuators. J. Acoust. Soc. Am. 87(3), 2432–2439 (1989)

    Article  Google Scholar 

  43. Lee, C.K., Chiang, W.W., O’Sullivan, T.C.: Piezoelectric modal sensor/actuator pairs for critical active damping vibration control. J. Acoust. Soc. Am. 90(1), 374–384 (1991)

    Article  Google Scholar 

  44. Lin, M.W., Abatan, A.O., Rogers, C.A.: Application of commercial finite element codes for the analysis of induced strain-actuated structures. J. Intell. Mater. Syst. Struct. 5(6), 869–875 (1994)

    Article  Google Scholar 

  45. Mackerle, J.: Finite element linear and nonlinear static and dynamic analysis of structural elements: a bibliography (1992–1995). Eng. Comput. 14(4), 347–440 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mahapatra, R.D., Singhal, A., Gopalakrishnan, S.: A higher-order finite waveguide model for spectral analysis of composite structures. Comput. Methods Appl. Mech. Eng. 195(9–12), 1116–1135 (2006)

    Article  MATH  Google Scholar 

  47. Maurini, C., dell’Isola, F., Pouget, J.: On model of layered piezoelectric beam for passive vibration control. J. Phys. IV 115(1), 307–316 (2004)

    Google Scholar 

  48. Mead, D.J.: A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J. Sound Vib. 27(2), 235–260 (1973)

    Article  MATH  Google Scholar 

  49. Mencik, J.M., Ichchou, M.N.: Multi-mode propagation and diffusion in structures through finite elements. Eur. J. Mech. A 24(5), 877–898 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mencik, J.M., Ichchou, M.N.: A substructuring technique for finite element wave propagation in multi-layered systems. Comput. Methods Appl. Mech. Eng. 197(6–8), 505–523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Moheimani, S.O.R., Fleming, A.J.: Piezoelectric Transducers for Vibration Control and Damping. Springer, Berlin (2006)

    MATH  Google Scholar 

  52. Monnier, P., Collet, M.: Definition of the mechanical design parameters to optimize efficiency of integral force feedback active damping strategy. J. Struct. Control Health Monitor. 12(1), 65–89 (2005)

    Article  Google Scholar 

  53. Neubauer, M., Oleskiewicz, R., Popp, K., Krzyzynski, T.: Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance. J. Sound Vib. 298(1–2), 84–107 (2006)

    Article  Google Scholar 

  54. Noor, A.K.: Bibliography of books and monographs on finite element technology. Appl. Mech. Rev. 44(1), 307–317 (1991)

    Article  Google Scholar 

  55. Ohayon, R., Soize, C.: Structural Acoustics and Vibration. Academic Press, San Diego (2001)

    Google Scholar 

  56. Park, C., Baz, A.: Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. J. Vib. Control 11(3), 331–346 (2005)

    Article  MATH  Google Scholar 

  57. Park, J., Palumbo, D.L.: A new approach to identify optimal of shunting elements for maximum damping of structural vibration using piezoelectrical patches. In: Active 2004, pp. 4–34 (2004)

    Google Scholar 

  58. Preumont, A.: Vibration Control of Active Structures: An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  59. Rao, S.S., Sunar, M.: Piezoelectricity and its use in the disturbance sensing and control of flexible structures: a survey. Appl. Mech. Rev. 47(4), 113–123 (1994)

    Article  Google Scholar 

  60. Saravanos, D.A., Heyliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct. 34(3), 359–378 (1997)

    Article  MATH  Google Scholar 

  61. Tang, J., Wang, K.W.: Active-passive hybrid piezoelectric networks for vibration control: comparisons and improvement. Smart Mater. Struct. 10(4), 794–806 (2001)

    Article  Google Scholar 

  62. Thorp, O., Ruzzene, M., Baz, A.: Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater. Struct. 10(5), 979–989 (2001)

    Article  Google Scholar 

  63. Thorp, O., Ruzzene, M., Baz, A.: Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings. Smart Mater. Struct. 14(4), 594–604 (2005)

    Article  Google Scholar 

  64. Tzou, H.S.: Vibration Control of Structures: An Introduction. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  65. Tzou, H.S., Fu, H.Q.: A study of segmentation of distributed piezoelectric sensors and actuators. Part I: theoretical analysis. J. Sound Vib. 172(2), 247–259 (1994)

    Article  MATH  Google Scholar 

  66. Tzou, H.S., Fu, H.Q.: A study of segmentation of distributed piezoelectric sensors and actuators. Part II: parametric study and active vibration controls. J. Sound Vib. 172(2), 261–275 (1994)

    Article  Google Scholar 

  67. Varadan, V.V., Lim, Y.H., Varadan, V.K.: Closed loop finite-element modeling of active/passive damping in structural vibration control. Smart Mater. Struct. 5(5), 685–694 (1996)

    Article  Google Scholar 

  68. von Flotow, A.H.: Disturbance propagation in structural networks. J. Sound Vib. 106(3), 433–450 (1986)

    Article  Google Scholar 

  69. Wang, S.Y.: A finite element model for the static and dynamic analysis of piezoelectric bimorph. Int. J. Solids Struct. 41(15), 4075–4096 (2004)

    Article  MATH  Google Scholar 

  70. Wu, S.Y.: Method for multiple-mode shunt damping of structural vibration using a single pzt transducer. In: Proceedings of SPIE, vol. 3327, p. 159 (1998)

    Google Scholar 

  71. Wu, S.Y., Bicos, A.S.: Structural vibration damping experiments using improved piezoelectric shunts. In: Davis, L.P. (ed.) Smart Structures and Materials 1997: Passive Damping and Isolation. Proc. SPIE, vol. 3045, pp. 40–50 (1997)

    Chapter  Google Scholar 

  72. Yang, H.T.Y., Saigal, S., Liaw, D.G.: Advances of thin shell finite elements and some applications—version I. Comput. Struct. 35(4), 481–504 (1996)

    Article  Google Scholar 

  73. Zhong, W.X., Williams, F.W.: On the direct solution of wave propagation for repetitive structures. J. Sound Vib. 181(3), 485–501 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a collaborative research agreement (ANR NT09 617542) between Georgia Tech, FEMTO-ST Institute and Ecole Centrale de Lyon. We gratefully acknowledge Georgia Tech and the French ANR and CNRS for supporting such international collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Collet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Collet, M. et al. (2011). Vibroacoustic Energy Diffusion Optimization in Beams and Plates by Means of Distributed Shunted Piezoelectric Patches. In: Vasques, C., Dias Rodrigues, J. (eds) Vibration and Structural Acoustics Analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1703-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1703-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1702-2

  • Online ISBN: 978-94-007-1703-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics