Skip to main content

The Anoxic Framvaren Fjord as a Model System to Study Protistan Diversity and Evolution

  • Chapter
  • First Online:
Anoxia

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 21))

Abstract

The origin of eukaryotes in an anoxic versus an oxygenated environment is controversially discussed. To date, no conclusive data are available to decide this debate for the one or for the other camp. Yet, a substantial data set, coming from the anaerobic biochemistry of extant eukaryotes, the modeling of Proterozoic ocean chemistry, and earth’s history (specifically when considered in concerto), provides reasonable evidence for the hypothesis of an early eukaryote evolution in an anoxic world, which is summarized in the first part of this chapter. Contemporary anoxic and sulfidic environments are the stage on which to find the key players that can help to strengthen this view. We, in the second part of this chapter, present an ideal natural model system – the supersulfidic, anoxic Framvaren Fjord in south Norway – to study the evolution and diversity of unicellular eukaryotes – the protists – and summarize the knowledge that has been accumulated from the Framvaren Fjord in this field of research, evidencing the importance of such systems in evolution and biodiversity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Adl SM, Leander BS, Simpson AGB, Archibald JM, Anderson OR, Bass D et al (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56:684–689

    PubMed  Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172(2):762–770

    PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    PubMed  CAS  Google Scholar 

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4:e6372

    PubMed  Google Scholar 

  • Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142

    PubMed  CAS  Google Scholar 

  • Bark AW, Goodfellow JG (1985) Studies on ciliated protozoa in Eutrophic Lakes 2. Field and laboratory studies on the effects of oxygen and other chemical gradients on ciliate distribution. Hydrobiologia 124:177–188

    CAS  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    PubMed  CAS  Google Scholar 

  • Beardsley C, Knittell K, Amann R, Pernthaler J (2005) Quantification and distinction of aplastidic and plastidic marine nanoplankton by fluorescence in situ hybridization. Aquat Microb Ecol 41:163–169

    Google Scholar 

  • Behnke A, Friedl T, Chepurnov VA, Mann DG (2004) Reproductive compatibility and rDNA sequence analyses in the Sellaphora pupula species complex (Bacillariophyta). J Phycol 40:193–208

    CAS  Google Scholar 

  • Behnke A, Bunge J, Barger K, Breiner H-W, Alla V, Stoeck T (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic Fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636

    PubMed  CAS  Google Scholar 

  • Behnke A, Barger KJ, Bunge J, Stoeck T (2010a) Spatio-temporal variations in protistan communities along an O-2/H2S gradient in the anoxic Framvaren Fjord (Norway). FEMS Microbiol Ecol 72:89–102

    PubMed  CAS  Google Scholar 

  • Behnke A, Engel M, Christen R, Nebel M, Klein R, Stoeck T (2010b) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13(2):340–349

    PubMed  Google Scholar 

  • Berney C, Fahrni J, Pawlowski J (2004) How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol 2:13

    PubMed  Google Scholar 

  • Bernhard JM, Buck KR (2004) Eukaryotes of the Cariaco, Soledad, and Santa Barbara Basins: Protists and metazoans associated with deep-water marine sulfide oxidizing microbial mats and their possible effects on the geologic record. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry – past and present, Geological Society of America Special Paper. Geological Society of America, Boulder 379:35–38

    Google Scholar 

  • Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697

    PubMed  CAS  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    PubMed  CAS  Google Scholar 

  • Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404

    Google Scholar 

  • Callahan HA, Litaker RW, Noga EJ (2002) Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo necator. J Eukaryot Microbiol 49:119–128

    PubMed  CAS  Google Scholar 

  • Camacho A, Vicente E (1998) Carbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain). FEMS Microbiol Ecol 25:11–22

    CAS  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    CAS  Google Scholar 

  • Caron DA, Countway P, Brown MV (2004) The growing contributions of molecular biology and immunology to protistan ecology: molecular signatures as ecological tools. J Eukaryot Microbiol 51:38–48

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1989) Molecular phylogeny. Archaebacteria and Archezoa. Nature 339:l00–01

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1991) Archamoebae: the ancestral eukaryotes? Biosystems 25:25–38

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2004) Only six kingdoms of life. Proc Biol Sci 271:1251–1262

    PubMed  CAS  Google Scholar 

  • Chao A (2005) Species estimation and applications. In: Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences. Wiley, New York, pp 7907–7916

    Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    PubMed  CAS  Google Scholar 

  • Cohen Y, Jorgensen BB, Padan E, Shilo M (1975) Sulfide-dependent anoxygenic photosynthesis in cyanobacterium Oscillatoria-limnetica. Nature 257:489–492

    CAS  Google Scholar 

  • Corliss JO (1999) Biodiversity, classification, and numbers of species of protists. In: Raven P, Williams T (eds) Nature and human society: the quest for a sustainable world. Proceedings of 2nd National Forum on Biodiversity. National Academic Press, Washington, DC, 28–31 Oct 1997

    Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30

    PubMed  Google Scholar 

  • Davidson K, John EH (2001) The grazing response of the heterotrophic microflagellate Paraphysomonas vestita when ingesting phytoplankton prey. Protistology 2:22–23

    Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    PubMed  CAS  Google Scholar 

  • DeLong EF, Wickham GS, Pace N (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    PubMed  CAS  Google Scholar 

  • Diez B, Pedrós-Alio C, Massana R (2001a) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    PubMed  CAS  Google Scholar 

  • Diez B, Pedrós-Alio C, Marsh TL, Massana R (2001b) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    PubMed  CAS  Google Scholar 

  • Doeller JE, Grieshaber MK, Kraus DW (2001) Chemolithoheterotrophy in a metazoan tissue: thiosulfate production matches ATP demand in ciliated mussel gills. J Exp Biol 204:3755–3764

    PubMed  CAS  Google Scholar 

  • Dryssen DW (1999) Framvaren and the Black Sea – similarities and differences. Aquat Geochem 5:59–73

    Google Scholar 

  • Dubilier N, Mulders C, Ferdelman T, de Beer D, Pernthaler A, Klein M et al (2001) Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411:298–302

    PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    PubMed  CAS  Google Scholar 

  • Ehrenberg CC (1838) Die Infusionsthierchen als vollkommene Organismen. Voss, Leopold, Leipzig

    Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    PubMed  CAS  Google Scholar 

  • Epstein SS, López-Garcia P (2008) “Missing” protists: a molecular perspective. Biodivers Conserv 17:261–276

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Fenchel T, Bernard C, Esteban G, Finlay BJ, Hansen PJ, Iversen N (1995) Microbial diversity and activity in a Danish Fjord with anoxic deep-water. Ophelia 43:45–100

    Google Scholar 

  • Finlay BJ (2001) Protozoa. In: Levin SA (ed) Encyclopedia of biodiversity. Academic, San Diego

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Corliss JO, Esteban GF, Fenchel T (1996) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71:221–237

    Google Scholar 

  • Fischer WW (2008) Biogeochemistry: life before the rise of oxygen. Nature 455:1051–1052

    PubMed  CAS  Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45:111–136

    Google Scholar 

  • Foissner W (2008) Protist diversity and distribution: some basic considerations. Biodivers Conserv 17:235–242

    Google Scholar 

  • Foissner W, Blatterer H, Berger H, Kohmann F (1991) Taxonomische und ökologische Revision des Saprobiensystems – Band I: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea. Bartels und Wernitzs Druck, Munich

    Google Scholar 

  • Foissner W, Berger H, Kohmann F (1992) Taxonomische und ökologische Revision des Saprobiensystems – Band II: Peritrichia, Heterotrichida, Odontostomastida. Bartels und Wernitzs Druck, Munich

    Google Scholar 

  • Foissner W, Berger H, Kohmann F (1994) Taxonomische und ökologische Revision des Saprobiensystems – Band III: Hymenostomata, Prostomatida, Nassulida. Bartels und Wernitzs Druck, Munich

    Google Scholar 

  • Foissner W, Berger H, Blatterer H, Kohmann F (1995) Taxonomische und ökologische Revision des Saprobiensystems – Band IV: Gymnostomatea, Loxodes, Suctoria. Bartels und Wernitzs Druck, Munich

    Google Scholar 

  • Gasol JM, Peters F, Guerrero R, Pedrosalio C (1992) Community Structure in Lake Ciso – biomass allocation to trophic groups and differing patterns of seasonal succession in the metalimnion and epilimnion. Archiv Fur Hydrobiologie 123:275–303

    Google Scholar 

  • Gasol JM, Garciacantizano J, Massana R, Guerrero R, Pedrosalio C (1993) Physiological ecology of a metalimnetic cryptomonas population – relationships to light, sulfide and nutrients. J Plankton Res 15:255–275

    CAS  Google Scholar 

  • Haeckel E (1878) Das Protistenreich. Eine populäre Übersicht über das Formengebiet der niedersten Lebewesen. Mit einem wissenschaftlichen Anhange: System der Protisten. Ernst Günther’s Verlag, Leipzig

    Google Scholar 

  • Han TM, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science 257:232–235

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Nakamura Y, Kamaishi T, Hasegawa M (1997) Early evolution of eukaryotes inferred from the amino acid sequences of elongation factors 1alpha and 2. Arch Protistenk 148:287–295

    Google Scholar 

  • Hausmann K, Hülsmann N, Radek R (2003) Protistology. Schweizerbart’sche Verlagsbuchhandlung, Science Publishers, Stuttgart

    Google Scholar 

  • Hellebust JA, Lewin J (1977) Heterotrophic nutrition. In: Werner D (ed) The biology of diatoms. University of California Press, Berkeley, pp 169–197

    Google Scholar 

  • Hogg J (1861) On the distinction of a plant and an animal, and on a fourth kingdom of nature. Edingb New Phil J 12:216–225

    Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Hong SH, Bunge J, Jeon SO, Epstein SS (2006) Predicting microbial species richness. Proc Natl Acad Sci USA 103:117–122

    PubMed  CAS  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    PubMed  CAS  Google Scholar 

  • Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH (2009) Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc Natl Acad Sci USA 106:16925–16929

    PubMed  CAS  Google Scholar 

  • Kahl DM (1930–1935) Urtiere oder Protozoa. I. Wipertiere oder Ciliata (Infusoria), eine Barbeitung der freilebenden und ectocomensalen Infusorien der Erde, unter Ausschluss der marinen Tintinnidae. Gustav Fischer, Jena

    Google Scholar 

  • Kahru M, Nommann S (1990) The phytoplankton spring bloom in the Baltic Sea in 1985, 1986 – Multitude of spatiotemporal scales. Continental Shelf Research 10:329–354

    Google Scholar 

  • Kahru M, Leppanen JM, Nommann S, Passow U, Postel L, Schulz S (1990) Spatiotemporal mosaic of the phytoplankton spring bloom in the Open Baltic Sea in 1986. Mar Ecol Prog Ser 66:301–309

    Google Scholar 

  • Katz LA, McManus GB, Snoeyenbos-West OLO, Griffin A, Pirog K, Costas B, Foissner W (2005) Reframing the ‘Everything is everywhere’ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41:55–65

    Google Scholar 

  • Katz LA, Snoeyenbos-West O, Doerder FP (2006) Patterns of protein evolution in Tetrahymena thermophila: implications for estimates of effective population sizekl. Mol Biol Evol 23:608–614

    PubMed  CAS  Google Scholar 

  • Kolodziej K, Stoeck T (2007) Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a Norwegian Estuary by use of fluorescence in situ hybridization-scanning electron microscopy. Appl Environ Microbiol 73:2718–2726

    PubMed  CAS  Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278

    PubMed  CAS  Google Scholar 

  • Lackey JB (1960) Calkinsia aureus gen. et sp. nov., a new marine euglenid. Trans Am Microsc Soc 79:105–107

    Google Scholar 

  • Lefranc M, Thenot A, Lepere C, Debroas D (2005) Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71:5935–5942

    PubMed  CAS  Google Scholar 

  • Lewitus AJ, Caron DA, Miller KR (1991) Effects of light and glycerol on the organization of the photosynthetic apparatus in the facultative heterotroph Pyrenomonas salina (Cryptophyceae). J Phycol 27:578–587

    Google Scholar 

  • Lindmark DG, Muller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    PubMed  CAS  Google Scholar 

  • López-Garcia P, Rodriguez-Valera F, Pedrós-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    PubMed  Google Scholar 

  • López-Garcia P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    PubMed  CAS  Google Scholar 

  • Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71:6175–6184

    PubMed  CAS  Google Scholar 

  • Lylis JC, Trainor FR (1973) Heterotrophic capabilities of Cyclotella meneghiniana. J Phycol 9:365–369

    Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205

    PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Massana R, Guillou L, Diez B, Pedrós-Alio C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    PubMed  CAS  Google Scholar 

  • Massana R, Balague V, Guillou L, Pedrós-Alio C (2004a) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    PubMed  CAS  Google Scholar 

  • Massana R, Castresana J, Balague V, Guillou L, Romari K, Groisillier A et al (2004b) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    PubMed  CAS  Google Scholar 

  • McDonald SM, Sarno D, Scanlan DJ, Zingone A (2007) Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. Aquat Microb Ecol 50:75–89

    Google Scholar 

  • Medlin LK, Metfies K, Mehl H, Wiltshire K, Valentin K (2006) Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods. Microb Ecol 52:53–71

    PubMed  CAS  Google Scholar 

  • Mentel M, Martin W (2008) Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond B Biol Sci 363:2717–2729

    PubMed  Google Scholar 

  • Mentel M, Martin W (2010) Anaerobic animals from an ancient, anoxic ecological niche. BMC Biol. http://www.biomedcentral.com/1741-7007/8/32

    PubMed  Google Scholar 

  • Moreira D, López-Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    PubMed  CAS  Google Scholar 

  • Moreira D, López-Garcia P, Vickerman K (2004) An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875

    PubMed  CAS  Google Scholar 

  • Morgan K, Kalff J (1975) The winter dark survival of an Algal Flagellate – Cryptomonas erosa (Skuja). Verh Int Ver Limnol 19:2734–2740

    Google Scholar 

  • Oeschger R, Janssen HH (1991) Histological studies on Halicryptus spinulosus (Priapulida) with regard to environmental hydrogen sulfide resistance. Hydrobiologia 222(1):1–12

    CAS  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution – a ribosomal-RNA approach. Annu Rev Microbiol 40:337–365

    PubMed  CAS  Google Scholar 

  • Ormerod KS (1988) Distribution of some non-phototrophic bacteria and active biomass (Atp) in the permanently anoxic Fjord Framvaren. Mar Chem 23:243–256

    CAS  Google Scholar 

  • Overmann J, Tilzer MM (1989) Control of primary productivity and the significance of photosynthetic bacteria in a Meromictic Kettle Lake – Mittlerer-Buchensee, West-Germany. Aquat Sci 51:261–278

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    PubMed  CAS  Google Scholar 

  • Patterson DJ (1999) The diversity of eukaryotes. Am Nat 154:S96–S124

    PubMed  Google Scholar 

  • Peyretaillade E, Broussolle V, Peyret P, Metenier G, Gouy M, Vivares CP (1998) Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin. Mol Biol Evol 15:683–689

    PubMed  CAS  Google Scholar 

  • Philippe H, Lopez P, Brinkmann H, Budin K, Germot A, Laurent J et al (2000) Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267:1213–1221

    PubMed  CAS  Google Scholar 

  • Porter KG, Sherr EB, Sherr BF, Pace M, Sanders RW (1985) Protozoa in Planktonic food webs. J Protozool 32:409–415

    Google Scholar 

  • Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding Prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207

    PubMed  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    PubMed  CAS  Google Scholar 

  • Reul A, Rodriguez V, Jimenez-Gomez F, Blanco JM, Bautista B, Sarhan T et al (2005) Variability in the spatio-temporal distribution and size-structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean). Continental Shelf Research 25:589–608

    Google Scholar 

  • Richards TA, Bass D (2005) Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr Opin Microbiol 8:240–252

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859

    PubMed  CAS  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in Eukaryotic evolution. Am Nat 154:S146–S163

    PubMed  Google Scholar 

  • Rolland A, Bertrand F, Maumy M, Jacquet S (2009) Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Res 43:3155–3168

    PubMed  CAS  Google Scholar 

  • Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49:784–798

    Google Scholar 

  • Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–U455

    PubMed  CAS  Google Scholar 

  • Searcy DG (2006) Rapid hydrogen sulfide consumption by Tetrahymena pyriformis and its implications for the origin of mitochondria. Eur J Protistol 42:221–231

    PubMed  Google Scholar 

  • Sherr EB, Sherr BF (2000) Marine microbes. An overview. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 13–46

    Google Scholar 

  • Simpson AG, Lukes J, Roger AJ (2002) The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083

    PubMed  CAS  Google Scholar 

  • Skei JM (1988) Framvaren – Environmental Setting. Mar Chem 23:209–218

    CAS  Google Scholar 

  • Slapeta J, Lopez-Garcia P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    PubMed  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    PubMed  CAS  Google Scholar 

  • Sørensen K (1988) The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic Fjord in Norway. Mar Chem 23:229–241

    Google Scholar 

  • Stockburger DW (1996) Introductory Statistics. Missouri State University, Springfield

    Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    PubMed  CAS  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003a) Novel eukaryotes from a permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    PubMed  CAS  Google Scholar 

  • Stoeck T, Fowle WH, Epstein SS (2003b) Methodology of protistan discovery: from rRNA detection to quality scanning electron microscope images. Appl Environ Microbiol 69:6856–6863

    PubMed  CAS  Google Scholar 

  • Stoeck T, Schwarz MVJ, Boenigk J, Schweikert M, von der Heyden S, Behnke A (2005) Cellular identity of an 18S rRNA gene sequence clade within the class Kinetoplastea: the novel genus Actuariola gen. nov (Neobodonida) with description of the type species Actuariola framvarensis sp nov. Int J Syst Evol Microbiol 55:2623–2635

    PubMed  CAS  Google Scholar 

  • Stoeck T, Hayward GT, Taylor RV, Epstein S (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    PubMed  CAS  Google Scholar 

  • Stoeck T, Behnke A, Christen R, Amaral-Zettler LA, Rodriguez-Mora M, Chistoserdov A et al (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72

    PubMed  Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, Richards TA (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31

    PubMed  CAS  Google Scholar 

  • Ström KM (1936) Land-lockes waters. Hydrography and bottom deposits in badly-ventilated Norwegian fjords with remarks upon sedimentation under anaerobic conditions. Norske Videnskaps Akademi, Oslo

    Google Scholar 

  • Summons RE (1993) Biogeochemical cycles: a review of fundamental aspects of organic matter formation, preservation and composition. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 3–21

    Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M et al (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176

    PubMed  CAS  Google Scholar 

  • Vyverman W, Tyler P (1995) Fine-Layer Zonation and Short-Term Changes of Microbial Communitites in 2 Coastal Meromictic Lakes (Madang Province, Papua-New-Guinea). Archiv Fur Hydrobiologie 132:385–406

    Google Scholar 

  • Whitfield J (2005) Biogeography: is everything everywhere? Science 310:960–961

    PubMed  CAS  Google Scholar 

  • Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    PubMed  CAS  Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhard JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol. http://www.biomedcentral.com/1471-2180/9/16

    PubMed  Google Scholar 

  • Zuendorf A, Bunge J, Behnke A, Barger KJ, Stoeck T (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol Ecol 58:476–491

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Stoeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stoeck, T., Behnke, A. (2012). The Anoxic Framvaren Fjord as a Model System to Study Protistan Diversity and Evolution. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_22

Download citation

Publish with us

Policies and ethics