Skip to main content

Systematic Exploration of Chemical Structures and Reaction Pathways on the Quantum Chemical Potential Energy Surface by Means of the Anharmonic Downward Distortion Following Method

  • Chapter
  • First Online:
Advances in the Theory of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 22))

Abstract

Anharmonic downward distortion (ADD) of potential energy surfaces has been used for automated global reaction route mapping of a given chemical formula of BCNOS. It is demonstrated that the ADD following method gives not only the larger numbers (122) of equilibrium structures (EQ) than those (103) of the earlier method by a stochastic approach but also the entire reaction pathways via 430 transition structures (TS) connecting the discovered EQ as well as 155 dissociation channels, 60 via TS and 95 without TS. Interesting propensities were found for chemical preference of isomeric structures and their dissociated fragments as well as characteristic reaction pathways, such as a fragment rotation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  2. Schlegel HB (2003) J Comput Chem 24:1514

    Article  CAS  Google Scholar 

  3. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  4. Bondensgård K, Jensen F (1996) J Chem Phys 104:8025

    Article  Google Scholar 

  5. Quapp W, Hirsch M, Imig O, Heidrich D (1998) J Comput Chem 19:1087

    Article  CAS  Google Scholar 

  6. Ohno K, Maeda S (2008) Phys Scripta 78:058122

    Article  Google Scholar 

  7. Ohno K, Maeda S (2004) Chem Phys Lett 384:277

    Article  CAS  Google Scholar 

  8. Maeda S, Ohno K (2005) J Phys Chem A 109:5742

    Article  CAS  Google Scholar 

  9. Ohno K, Maeda S (2006) J Phys Chem A 110:8933

    Article  CAS  Google Scholar 

  10. Maeda S, Ohno K (2004) Chem Lett 33:1372

    Article  CAS  Google Scholar 

  11. Maeda S, Ohno K (2004) Chem Phys Lett 398:240

    Article  CAS  Google Scholar 

  12. Maeda S, Ohno K (2005) Chem Phys Lett 404:95

    Article  CAS  Google Scholar 

  13. Yang X, Maeda S, Ohno K (2005) J Phys Chem A 109:7319

    Article  CAS  Google Scholar 

  14. Yang X, Maeda S, Ohno K (2006) Chem Phys Lett 418:208

    Article  CAS  Google Scholar 

  15. Maeda S, Ohno K (2006) Astrophys J 640:823

    Article  CAS  Google Scholar 

  16. Ohno K, Maeda S (2006) Chem Lett 35:492

    Article  CAS  Google Scholar 

  17. Yang X, Maeda S, Ohno K (2007) J Phys Chem A 111:5099

    Article  CAS  Google Scholar 

  18. Luo Y, Ohno K (2007) Organometallics 26:3597

    Article  CAS  Google Scholar 

  19. Watanabe Y, Maeda S, Ohno K (2007) Chem Phys Lett 447:21

    Article  CAS  Google Scholar 

  20. Maeda S, Ohno K (2008) Chem Phys Lett 460:55

    Article  CAS  Google Scholar 

  21. Luo Y, Maeda S, Ohno K (2009) Chem Phys Lett 469:57

    Article  CAS  Google Scholar 

  22. Maeda S, Ohno K, Morokuma K (2009) J Phys Chem A 113:1704

    Article  CAS  Google Scholar 

  23. Moteki M, Maeda S, Ohno K (2009) Organometallics 28:2218

    Article  CAS  Google Scholar 

  24. Maeda S, Ohno K (2006) J Chem Phys 124:174306

    Article  Google Scholar 

  25. Maeda S, Ohno K (2007) J Phys Chem A 111:4527

    Article  CAS  Google Scholar 

  26. Luo Y, Maeda S, Ohno K (2007) J Phys Chem A 111:10732

    Article  CAS  Google Scholar 

  27. Maeda S, Ohno K (2008) J Phys Chem A 112:2962

    Article  CAS  Google Scholar 

  28. Luo Y, Maeda S, Ohno K (2009) J Comput Chem 30:952

    Article  CAS  Google Scholar 

  29. Maeda S, Ohno K (2007) J Phys Chem A 111:13168

    Article  CAS  Google Scholar 

  30. Luo Y, Maeda S, Ohno K (2008) Tetrahedron Lett 49:6841

    Article  CAS  Google Scholar 

  31. Maeda S, Ohno K (2008) J Am Chem Soc 130:17228

    Article  CAS  Google Scholar 

  32. Maeda S, Ohno K, Morokuma K (2009) J Chem Theory Comput 5:2734

    Article  CAS  Google Scholar 

  33. Lloyd LD, Johnston L (1998) Chem Phys 236:107

    Article  CAS  Google Scholar 

  34. Saunders M (2004) J Comput Chem 25:621

    Article  CAS  Google Scholar 

  35. Bera PP, Sattelmeyer KW, Sannders M, Schefer HF III, Schleyer PV (2006) J Phys Chem A 110:4287

    Article  CAS  Google Scholar 

  36. Banerjee A, Adams N, Simons J, Shepard R (1985) J Phys Chem 89:52

    Article  CAS  Google Scholar 

  37. Csaszar P, Pulay P (1984) J Mol Struct 114:31

    Article  CAS  Google Scholar 

  38. Page M, McIver JW Jr (1988) J Chem Phys 88:922

    Article  CAS  Google Scholar 

  39. Frisch MJ et al (2004) GAUSSIAN 03, Revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

Download references

Acknowledgements

K.O. acknowledges the Grants-in-Aid for Scientific Research (No. 21350007 and 21655002) from the Ministry of Education, Science, Sports, and Culture. The authors thank to Dr Satoshi Maeda, for producing fundamental parts of the GRRM program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohno, K., Osada, Y. (2012). Systematic Exploration of Chemical Structures and Reaction Pathways on the Quantum Chemical Potential Energy Surface by Means of the Anharmonic Downward Distortion Following Method. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_22

Download citation

Publish with us

Policies and ethics