Skip to main content

Why Specific ETOs are Advantageous for NMR and Molecular Interactions

  • Chapter
  • First Online:
Advances in the Theory of Quantum Systems in Chemistry and Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 22))

Abstract

This paper advocates use of the atomic orbitals which have direct physical interpretation, i.e., Coulomb Sturmians and hydrogen-like orbitals. They are exponential type orbitals (ETOs). Their radial nodes are shown to be essential in obtaining accurate local energy for Quantum Monte Carlo, molecular interactions a nuclear and shielding tensors for NMR work. The NMR work builds on a 2003 French PhD and many numerical results were published by 2007. The improvements in this paper are noteworthy, the key being the actual basis function choice. Until 2008, their products on different atoms were difficult to manipulate for the evaluation of two-electron integrals. Coulomb resolutions provide an excellent approximation that reduces these integrals to a sum of one-electron overlap-like integral products that each involve orbitals on at most two centers. Such two-center integrals are separable in prolate spheroidal co-ordinates. They are thus readily evaluated. Only these integrals need to be re-evaluated to change basis functions. In this paper, a review of the translation procedures for Slater type orbitals (STO) and for Coulomb Sturmians follows that of the more recent application to ETOs of a particularly convenient Coulomb resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfè D, Gillan MJ (2004) Phys Rev B 70:161101

    Article  Google Scholar 

  2. Avery J, Avery J (2007) Generalised sturmians and atomic spectra. World Scientific, Singapore

    Google Scholar 

  3. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    Article  CAS  Google Scholar 

  4. Berlu L (2003) PhD thesis, Université Blaise Pascal, Clermont Ferrand, France, Directed by P. E. Hoggan only.

    Google Scholar 

  5. Berlu L, Hoggan PE (2003) J Theor Comput Chem 2:147

    Article  CAS  Google Scholar 

  6. Bonaccorsi R, Scrocco E, Tomasi J (1970) J Chem Phys 52:5270

    Article  CAS  Google Scholar 

  7. BouferguèneA (1992) PhD thesis, Nancy I University, France

    Google Scholar 

  8. (a) Bouferguène A,  Fares M,  Hoggan PE (1996) Stater type orbital package for general molecular electronic structure calculations ab initio. Int J Quantum Chem 57:801 (b) Bouferguène A, Hoggan PE (1996) STOP slater type orbital package program description. Q.C.P.E. Quart Bull 16:1

    Google Scholar 

  9. Bouferguène A, Rinaldi DL (1994) Int J Quantum Chem 50:21

    Article  Google Scholar 

  10. Boys SF (1950) Proc Roy Soc [London] A 200:542

    Google Scholar 

  11. Boys SF, Cook GB, Reeves CM, Shavitt I (1956) Automated molecular electronic structure calculations. Nature 178:1207

    Google Scholar 

  12. Carbó R, Leyda L, Arnau M (1980) Int J Quantum Chem 17:1185

    Article  Google Scholar 

  13. Cesco JC, Pérez JE, Denner CC, Giubergia GO, Rosso AE (2005) Appl Num Math 55(2):173 and references therein

    Google Scholar 

  14. Chuluunbaatar O, Joulakian B (2010) Three center continuum wave-function: application to first ionisation of molecular orbitals of CO2 by electron impact. J Phys B 43:155201

    Article  Google Scholar 

  15. Clementi E, Raimondi DL (1963) J Chem Phys 38:2686

    Article  CAS  Google Scholar 

  16. Cohen AJ, Handy NC (2002) J Chem Phys 117:1470 Watson MA, Cohen AJ, Handy NC (2003) J Chem Phys 119:6475 Watson MA, Cohen AJ, Handy NC, Helgaker T (2004) J Chem Phys 120:7252

    Google Scholar 

  17. Condon EU, Shortley GH (1978) The theory of atomic spectra. Cambridge University Press, Cambridge, UK, p 48

    Google Scholar 

  18. Csizmadia IG, Harrison MC, Moskowitz JW, Seung S, Sutcliffe BT, Barnett MP (1963) POLYATOM: Program set for non-empirical molecular calculations. Massachusetts Institute of Technology Cambridge, 02139 Massachusetts. QCPE No 11, Programme 47 and Barnett MP Rev Mod Phys 35:571

    Google Scholar 

  19. Ditchfield R (1972) J Chem Phys 56:5688

    Article  CAS  Google Scholar 

  20. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  21. Drummond ND, Towler MD, Needs RJ (2004) Phys Rev B 70:235119

    Article  Google Scholar 

  22. Fernández Rico J, López R, Aguado A, Ema I, Ramírez G (1998) J Comput Chem 19(11):1284

    Google Scholar 

  23. Fernández Rico J, López R, Ramírez G, Ema I, Ludeña EV (2004) J Comput Chem 25:1355, and online archive

    Google Scholar 

  24. Foulkes, WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33

    Article  CAS  Google Scholar 

  25. Frisch MJ (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  26. Gaunt JA (1929) Phil Trans R Soc A 228:151

    Article  Google Scholar 

  27. Gill PMW, Gilbert ATB (2009) Resolutions of the Coulomb Operator. II The Laguerre Generator. Chem Phys (Accepted, 2008) 130(23)

    Google Scholar 

  28. Glushov VN, Wilson S (2002) Int J Quantum Chem 89:237, (2004) 99:903, (2007) 107:in press. Adv Quantum Chem (2001) 39:123

    Article  Google Scholar 

  29. Guseinov I, Seckin Gorgun N (2010) J Mol Model 17(16):1517–1524

    Google Scholar 

  30. Hamouda AB, Absi N, Hoggan PE, Pimpinelli A (2008) Phys Rev B 77:245430

    Article  Google Scholar 

  31. Hehre WJ, Lathan WA, Ditchfield R, Newton MD, Pople JA (1973) GAUSSIAN 70: Ab initio SCF-MO calculations on organic molecules QCPE 11, Programme number 236

    Google Scholar 

  32. Hinde RJ (2008) Six dimensional potential energy surface of H2–H2. J Chem Phys 128 (15):154308

    Article  Google Scholar 

  33. Hoggan PE (2004) Int J Quantum Chem 100:218

    Google Scholar 

  34. Hoggan PE (2007) Trial wavefunctions for Quantum Monte Carlo simlations over ETOs. AIP Proc 963(2):193–197

    Article  Google Scholar 

  35. Hoggan PE (2010) Four-center Slater type orbital molecular integrals without orbital translations. Int J Quantum Chem 110:98–103

    Article  CAS  Google Scholar 

  36. Homeier HHH, Joachim Weniger E, Steinborn EO (1992) Programs for the evaluation of overlap integrals with B functions. Comput Phys Commun 72:269–287; Homeier HHH, Steinborn EO (1993) Programs for the evaluation of nuclear attraction integrals with B functions. Comput Phys Commun 77:135–151

    Google Scholar 

  37. Hsing, C-R, Wei C-M, Drummond ND, Needs RJ (2009) Phys Rev B 79:245401

    Article  Google Scholar 

  38. Joudieh N (1998) PhD thesis, Faculté des Sciences de l’Université de Rouen, Rouen, France

    Google Scholar 

  39. Kato T (1957) Commun Pure Appl Math 10:151

    Article  Google Scholar 

  40. Lee RM et al arXiv:1006.1798

    Google Scholar 

  41. London F (1937) J Phys Radium 8:397

    Article  CAS  Google Scholar 

  42. McLean AD, Yoshimine M, Lengsfield BH, Bagus PS, Liu B (1991) ALCHEMY II. IBM research, Yorktown Heights, MOTECC 91

    Google Scholar 

  43. MSc Thesis. Clermont, 2010

    Google Scholar 

  44. Needs RJ, Towler MD, Drummond ND, López Ríos P (2010) J Phys:Condens Matter 22:023201; casino website: www.tcm.phy.cam.ac.uk/~mdt26/casino2.html. Accessed 10 Feb 2010

  45. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  46. PhD Thesis. Clermont, 2009. Available in pdf at www.inist.fr

  47. Pinchon D, Hoggan PE (2007) J Phys A 40:1597

    Article  CAS  Google Scholar 

  48. Pinchon D, Hoggan PE (2007) Int J Quantum Chem 107:2186

    Article  CAS  Google Scholar 

  49. Pinchon D, Hoggan PE (2009) Int J Quantum Chem 109:135

    Article  CAS  Google Scholar 

  50. Podolanski J (1931) Ann Phys 402(7):868

    Article  Google Scholar 

  51. Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw Hill, New York

    Google Scholar 

  52. Pritchard HO (2001) J Mol Graph Model 19:623

    CAS  Google Scholar 

  53. Red E, Weatherford CA (2004) Int J Quantum Chem 100:204

    Article  Google Scholar 

  54. Reinhardt P, Hoggan PE (2009) Cusps and derivatives for H2O wave functions using Hartree-Fock Slater code: a density study. Int J Quantum Chem 109:3191–3198

    Article  CAS  Google Scholar 

  55. Roothaan CCJ (1951) J Chem Phys 19:1445

    Article  CAS  Google Scholar 

  56. Shao Y, White CA, Head-Gordon M (2001) J Chem Phys 114 6572

    Article  CAS  Google Scholar 

  57. Shavitt I (1963) In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol 2. Academic, New York, p. 15

    Google Scholar 

  58. Slater JC (1930) Phys Rev 36:57

    Article  CAS  Google Scholar 

  59. Slater JC (1932) Phys Rev 42:33

    Article  CAS  Google Scholar 

  60. Smith SJ, Sutcliffe BT (1997) In: Lipkowtz KB, Boyd BD (eds) The development of computational chemistry in the United Kingdom in Reviews in computational chemistry. VCH Academic Publishers, New York

    Google Scholar 

  61. Stevens RM, Lipscomb, WN (1964) J Chem Phys 40:2238–2247

    Article  CAS  Google Scholar 

  62. Stevens RM (1970) The POLYCAL program. J Chem Phys 52:1397

    Article  CAS  Google Scholar 

  63. Toulouse, J, Hoggan PE, Reinhardt P, Caffarel M, Umrigar CJ (2011) PTCP, B22

    Google Scholar 

  64. Toulouse J, Hoggan PE, Reinhardt P Progress in QMC, ACS (in press 2011)

    Google Scholar 

  65. Tully JC (1973) J hem Phys 58:1396

    CAS  Google Scholar 

  66. Vagranov SA, Gilbert ATB, Duplaxes E, Gill PMW (2008) J Chem Phys 128:201104

    Article  Google Scholar 

  67. Vieille L, Berlu L, Combourieu B, Hoggan PE (2002) J Theor Comput Chem 1(2):295

    Article  CAS  Google Scholar 

  68. Weatherford CA, Red E, Joseph D, Hoggan PE (2006) Mol Phys 104:1385

    Article  CAS  Google Scholar 

  69. Weniger EJ (1985) J Math Phys 26:276

    Article  Google Scholar 

  70. Weniger EJ, Steinborn EO (1982) Comput Phys Commun 25:149

    Article  CAS  Google Scholar 

  71. Weniger EJ, Steinborn EO (1989) J Math Phys 30(4):774

    Article  Google Scholar 

  72. Werner H-J, Knowles PJ, Lindh R, Manby FR et al (2011) MOLPRO, version 2006.1 a package of ab initio programs. www.molpro.net. Accessed 6 Aug 2011

  73. Zaim N (2010) Poster presentation at QSCP XV Cambridge

    Google Scholar 

  74. Sidi A, Hoggan PE (2011) Int J Pure Appl Math 71:481–498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hoggan, P.E., Bouferguène, A. (2012). Why Specific ETOs are Advantageous for NMR and Molecular Interactions. In: Hoggan, P., Brändas, E., Maruani, J., Piecuch, P., Delgado-Barrio, G. (eds) Advances in the Theory of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2076-3_5

Download citation

Publish with us

Policies and ethics