Skip to main content

Mesenchymal Stem Cells: Role of Mechanical Strain in Promoting Apoptosis and Differentiation

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells,Volume 3

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 3))

  • 1448 Accesses

Abstract

Physical forces play an important role in regulating cell proliferation, differentiation, and fate by activating specific intracellular signal transduction pathways. Mesenchymal stem cells (MSCs) are adult stem cells which may represent ideal cells for use in cell-based skeletal tissue engineering strategies. However, further research into MSC biology is required to fully appreciate and utilise the broad therapeutic potential of MSCs. Mechanical conditioning has been widely utilised as a biophysical signal to aid cell-based tissue engineering applications. Mechanical strain has shown the ability to induce differentiation of MSCs along osteogenic, chondrogenic and myogenic lineages. However, there is also evidence of a rate-dependent apoptotic response to mechanical strain in MSCs. This dualistic response to mechanical strain highlights the necessity to regulate and understand the underlying mechanisms involved in the priming of these cells for use in the tissue engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angele P, Schumann D, Angele M, Kinner B, Englert C, Hente R, Füchtmeier B, Nerlich M, Neumann C, Kujat R (2004) Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346

    PubMed  CAS  Google Scholar 

  • Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P (2002) Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. J Orthop Res 20(5):947–952

    Article  PubMed  CAS  Google Scholar 

  • Best PJ, Hasdai D, Sangiorgi G, Schwartz RS, Holmes DR Jr, Simari RD, Lerman A (1999) Apoptosis. Basic concepts and implications in coronary artery disease. Arterioscler Thromb Vasc Biol 19:14–22

    Article  PubMed  CAS  Google Scholar 

  • Blatt NB, Glick GD (2001) Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg Med Chem 9:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Cain K (2003) Chemical-induced apoptosis: formation of the Apaf-1 apoptosome. Drug Metab Rev 35:337–363

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  PubMed  CAS  Google Scholar 

  • Decker P, Muller S (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3:275–283

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282:148–152

    Article  PubMed  CAS  Google Scholar 

  • Farrell E, Byrne EM, Fischer J, O’Brien FJ, O’Connell BC, Prendergast PJ, Campbell VA (2007) A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds. Technol Health Care 15(1):19–31

    PubMed  CAS  Google Scholar 

  • Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35

    Article  PubMed  CAS  Google Scholar 

  • Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M (2004) Conversion of mechanical force into biochemical signaling. J Biol Chem 279:54793–54801

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Nishiyama T, Hayashi S, Fujishiro T, Takebe K, Kanzaki N, Kuroda R, Kurosaka M (2009) Role of p53 in human chondrocyte apoptosis in response to shear strain. Arthritis Rheum 60(8):2340–2349

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR (2003) Worms, life and death: Nobel lecture in Les Prix Nobel. In: Frangsmyr T (ed) The Nobel prizes. Edita Norstedts Tryckeri AB, Stockholm, pp 320–351

    Google Scholar 

  • Huang C-YC, Hagar KL, Frost LE, Sun Y,, Cheung HS (2004) Effects of cyclic compressing loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827

    Article  PubMed  CAS  Google Scholar 

  • Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, van Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41

    PubMed  CAS  Google Scholar 

  • Jänicke RU, Ng P, Sprengart ML, Porter AG (1998) Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 273:15540–15545

    Article  PubMed  Google Scholar 

  • Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Altucci L, Peluso G, Giordano A, Galderisi U (2005) Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem 94:645–655

    Article  PubMed  CAS  Google Scholar 

  • Kadler K (2004) Matrix loading: Assembly of extracellular matrix collagen fibrils during embryogenesis. Birth Defects Res C Embryo Today 72:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kearney EM, Prendergast PJ, Campbell VA (2008) Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J Biomech Eng 130(6):061004

    Article  PubMed  CAS  Google Scholar 

  • Kearney EM, Farrell E, Prendergast PJ, Campbell VA (2010) Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng 38(5):1767–1779

    Article  PubMed  CAS  Google Scholar 

  • Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90(1):75–85

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182:471–474

    Article  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  • Kisiday JD, Frisbie DD, McIlwraith CW, Grodzinsky AJ (2009) Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng Part A 15(10):2817–2824

    Article  PubMed  CAS  Google Scholar 

  • Lee DA, Knight MM, Campbell JJ, Bader DL (2011) Stem cell Mechanobiology. J Cell Biochem 112(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Mayr M, Hu Y, Hainaut P, Xu Q (2002) Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. FASEB J 16:1423–1425

    PubMed  CAS  Google Scholar 

  • Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME (2007) Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663

    Article  PubMed  CAS  Google Scholar 

  • Nowlan NC, Murphy P, Prendergast PJ (2007) Mechanobiology of embryonic limb development. Ann N Y Acad Sci 1101:389–411

    Article  PubMed  Google Scholar 

  • Pelaez D, Huang C-YC, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18(1):93–102

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 449:27–44

    Article  PubMed  CAS  Google Scholar 

  • Prendergast PJ, Huiskes R, Soballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548

    Article  PubMed  CAS  Google Scholar 

  • Riddle RC, Taylor AF, Genetos DC, Donahue HJ (2006) MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 290(3):776–784

    Article  Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Sedding DG, Homann M, Seay U, Tillmanns H, Preissner KT, Braun-Dullaeus RC (2007) Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J 22(2):579–589

    Article  PubMed  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  • Simmons CA, Matlis S, Thornton AJ, Chen S, Wang C-Y, Mooney DJ (2003) Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK 1/2) signalling pathway. J Biomech 8:1087–1096

    Article  Google Scholar 

  • Sumanasinghe RD, Bernacki SH, Loboa EG (2006) Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459–3465

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Nakajima H, Hirai T, Yayama T, Chen K-B, Kobayashi S, Roberts S, Johnson WE, Baba H (2010) Microarray analysis of expression of cell death-associated genes in rat spinal cord cells exposed to cyclic tensile stresses in vitro. BMC Neurosci 11:84

    Article  PubMed  Google Scholar 

  • Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full thickness defects of articular cartilage. J Bone Joint Surg AM 76:579–592

    PubMed  CAS  Google Scholar 

  • Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA Proc 104(40):15941–15946

    Article  CAS  Google Scholar 

  • Ward DF Jr, Williams WA, Schapiro NE, Weber GL, Christy SR, Salt M, Klees RF, Boskey A, Plopper GE (2007) Focal adhesion kinase signalling controls cyclic tensile strain enhanced collagen I-induced osteogenic differentiation of human mesenchymal stem cells. Mol Cell Biomech 4(4):177–188

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoife Gowran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McKayed, K.K., Prendergast, P.J., Campbell, V.A., Gowran, A. (2012). Mesenchymal Stem Cells: Role of Mechanical Strain in Promoting Apoptosis and Differentiation. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells,Volume 3. Stem Cells and Cancer Stem Cells, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2415-0_19

Download citation

Publish with us

Policies and ethics