Skip to main content

Possible Strategies of Bacterial Involvement in Cancer Development

  • Chapter
  • First Online:
Bacteria and Cancer

Abstract

Infections have been implicated in around 18% of all malignancy in humans. The common infections include viruses, bacteria and Schistosomes. The role of bacteria in carcinogenesis is now quite evident particularly in H. pylori induced gastric cancer and mucosa associated lymphnoid tissue (MALT) lymphoma and Salmonella typhi causing carcinoma gallbladder. The chronic inflammation is the important mechanism involved in the majority of bacteria induced malignancies. The chronic inflammation is mediated by various pro and anti – inflammatory cytokines including IL-1, IL-6, IL-17, TNF-α and IL-10. The key factor in the inflammatory process is the activation of NF-kB. Various toxins are produced by different bacteria which cause direct damage to the host cells by DNA damage or affecting DNA repair mechanism resulting in alteration in the enzyme transcription or translation. It has also been postulated that bacterial infection activate inflammatory/immune cells to generate reactive oxygen species (ROS) and reactive nitrogen species (RNS) which causes DNA damage leading to cancer. The free radicals generated also acts at different levels which affects the cellular homeostasis.

The epigenetic alteration in form of DNA methylation and histone modification has also been reported in bacteria induced carcinogenesis. The other alternative molecules has been evolved by the bacteria that involved in adhesions of bacteria to cell surfaces, modulation of cytoskeleton or junctional activities and affecting specific signaling pathways.

The studies have shown that bacterial infection also causes immune modulation and result in persistence of the infection. It is also seen that not only the bacterial pathogen but the host genetic factors also determine the susceptibility and persistence­ of infection. The certain genotypes of inflammatory mediators are associated with increased risk of cancer. Thus, the bacteria induced carcinogenesis is a multifaceted, complex process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4HNE:

4-hydroxynonenal

AP-1:

Activator Protein-1

BMP:

Bone Morphogenetic Protein

Cag A:

Cytotoxin Associated Gene Antigen

Cag PAI:

Cag A pathogenicity Associated Island

CDT:

Cytolethal Distending Toxin

Cif:

Cycle Inhibiting Factor

CNF:

Cytotoxic Necrotizing Factor

COX-2:

Cyclooxygenase-2

CpG:

—C—phosphate—G—

dG:

deoxyguanosine

EDIN:

Epidermal Differentiation Inhibiting Factor

ERK:

Extracellular Regulated Tyrosine Kinase

FAK:

Focal Adhesion Kinase

H. pylori :

Helicobacter pylori

HAT:

Histone Acetyl Transferases

HDACs:

Histone Deacetylase

HlpA:

Histone Like Protein

ICAM-1:

Intercellular Cell Adhesion Molecules

IKK:

Inhibitory Kappa B Kinase

IL:

Interleukin

INF:

Interferon

iNOS:

inducible Nitric Oxide Synthase

Kb:

Kilobase

KDa:

Kilo Dalton

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

MALT:

Mucosa Associated Lymphoid Tissue

MAPK:

Mitogen Activated Protein Kinase

MIP:

Macrophage inflammatory protein

NF-κB:

Nuclear Factor Kappa B

NG:

Nitroguanine

PMT:

Pasturella multocida toxin

RN:

Recepter Antgonist

RNS:

Reactive Nitrogen Species

ROS:

Reactive Oxygen Species

RR:

Relative Risk

Shh:

Sonic Hedgehog Homolog

SRF:

Serum Response Factor

T4SS:

Type IV Secretion Apparatus

TH1:

Type 1Helper T-cell

TLR4:

Toll like Receptor 4

TNF:

Tumour Necrosis factor

VacA:

Vacuolating Cytotoxin

VEGF:

Vascular Endothelial Growth Factor

References

  • Alberg AJ, Brock MV, Samet JM (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23(14):3175–3185

    Article  PubMed  Google Scholar 

  • Axelrod L, Munster AM, O’Brien TF (1971) Typhoid cholecystitis and gallbladder carcinoma after interval of 67 years. JAMA 217(1):83

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  PubMed  CAS  Google Scholar 

  • Bartsch H, Nair J (2005) Accumulation of lipid peroxidation-derived DNA lesions: potential lead markers for chemoprevention of inflammation-driven malignancies. Mutat Res 591:34–44

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Clarke C, Oakeley CM et al (1983) The microbiology and pathogenesis of infective endocarditis. Br Heart J 50(6):513–519

    Article  PubMed  CAS  Google Scholar 

  • Bereswill S, Waidner U, Odenbreit S et al (1998) Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology 144:2505–2516

    Article  PubMed  CAS  Google Scholar 

  • Bereswill S, Greiner S, van Vliet AHM et al (2000) Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J Bacteriol 182(21):5948–5953

    Article  PubMed  CAS  Google Scholar 

  • Biarc J, Nguyen IS, Pini A et al (2004) Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S. bovis). Carcinogenesis 25(8):1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Bisno AL (1991) Streptococcal infection. In: Harrison TR, Wilson JD, Isselbacher KJ et al (eds) Harrison’s principles of internal medicine, 12th edn. McGraw-Hill, New York, pp 563–569

    Google Scholar 

  • Blaser MJ, Atherton JC (2004) Helicobacter pylori persistence: biology and disease. J Clin Invest 113(3):321–333

    PubMed  CAS  Google Scholar 

  • Burns CA, McCaughey R, Lauter CB (1985) The association of Streptococcus bovis fecal carriage and colon neoplasia; possible relationship with polyps and their premalignant potential. Am J Gastroenterol 80(1):42–44

    PubMed  CAS  Google Scholar 

  • Calam J (1999) Helicobacter pylori modulation of gastric acid. Yale J Biol Med 72:195–202

    PubMed  CAS  Google Scholar 

  • Caygill CP, Hill MJ, Braddick M et al (1994) Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet 343(8889):83–84

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi AK, Gaydos CA, Agreda P et al (2010) Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidemiol Biomarkers Prev 19(6):1498–1505

    Article  PubMed  CAS  Google Scholar 

  • Chen LT, Lin JT, Tai JJ et al (2005) Long-term results of anti-Helicobacter pylori therapy in early-stage gastric high-grade transformed MALT lymphoma. J Natl Cancer Inst 97(18):1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Covacci A, Censini S, Bugnoli M et al (1993) Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 90(12):5791–5795

    Article  PubMed  CAS  Google Scholar 

  • Cutait R, Mansur A, Habr-Gama A (1988) Endocardite por streptococcus bovis e polipos de colon. Rev Bras Coloproctol 8:109–110

    Google Scholar 

  • de Jong R, Altare F, Haagen IA et al (1998) Severe mycobacterial and salmonella infections in interleukin-12 receptor-deficient patients. Science 280(5368):1435–1438

    Article  PubMed  Google Scholar 

  • de Martel C, Franceschi S (2009) Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol 70(3):183–194

    Article  PubMed  Google Scholar 

  • Ellmerich S, Scholler M, Duranton B et al (2000) Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis 21(4):753–756

    Article  PubMed  CAS  Google Scholar 

  • El-Omar EM, Carrington M, Chow WH et al (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402

    Article  PubMed  CAS  Google Scholar 

  • El-Omar EM, Rabkin CS, Gammon MD et al (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124(5):1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Fan T, Lu H, Hu H et al (1998) Inhibition of apoptosis in Chlamydia- infected cells: blockade of mitochondrial cytochrome C release and caspase activation. J Exp Med 187(4):487–496

    Article  PubMed  CAS  Google Scholar 

  • Ferlay J, Bray F, Pisani P et al (2004) GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide, IARC CancerBase No.5, version 2.0. IARC Press, Lyon

    Google Scholar 

  • Fiorentini C, Matarrese P, Straface E et al (1998) Toxin-induced activation of Rho GTP-binding protein increases Bcl-2 expression and influences mitochondrial homeostasis. Exp Cell Res 242(1):341–350

    Article  PubMed  CAS  Google Scholar 

  • Fox J, Wang TC, Parsonnet J (2006) Helicobacter, chronic infection and cancer. In: Zur Hausen H (ed) Infectious causes of human cancer. Wiley- VCH, Weinheim, pp 386–466

    Chapter  Google Scholar 

  • Friedrich IA, Wormser GP, Gottfried EB (1982) The association of remote Streptococcus bovis bacteremia with colonic neoplasia. Am J Gastroenterol 77(2):82–84

    PubMed  CAS  Google Scholar 

  • Gaydos CA (2000) Growth in vascular cells and cytokine production by Chlamydia pneumoniae. J Infect Dis 181(Suppl 3):S473–S478

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Shane RB, Berencsi K et al (2000) Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J Immunol 164(10):5522–5529

    PubMed  CAS  Google Scholar 

  • Gold JS, Bayar S, Salem RR (2004) Association of Streptcoccus bovis bacteremia with colonic neoplasia and extra-colonic malignancy. Arch Surg 139(7):760–765

    Article  PubMed  Google Scholar 

  • Grinberg M, Mansur AJ, Ferreira DO et al (1990) Endocardite Por Streptococcus bovis e neoplasias de colon e reto. Arq Bras Cardiol 54(4):265–269

    PubMed  CAS  Google Scholar 

  • Häcker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 357:re13

    Google Scholar 

  • Haghjoo E, Galán JE (2004) Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci USA 101(13):4614–4619

    Article  PubMed  CAS  Google Scholar 

  • Hahn DL, Azenabor AA, Beatty WL et al (2002) Chlamydia pneumoniae as a respiratory pathogen. Front Biosci 7:66–76

    Article  Google Scholar 

  • Harris PR, Smythies LE, Smith PD et al (2000) Inflammatory cytokines mRNA expression during early and persistent Helicobacter pylori infection in nonhuman primates. J Infect Dis 181(2):783–786

    Article  PubMed  CAS  Google Scholar 

  • Helicobacter and Cancer Collaborative Group (2001) Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49(3):347–353

    Article  Google Scholar 

  • Hoen B, Briancon S, Delahaye F et al (1994) Tumors of the colon increase the risk of developing Streptococcus bovis endocarditis: case-control study. Clin Infect Dis 19(2):361–362

    Article  PubMed  CAS  Google Scholar 

  • Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380

    Article  PubMed  CAS  Google Scholar 

  • International Agency for Research on Cancer (1994) IARC monographs on the evaluation of carcinogenic risks to humans, vol 61, Schistosomes, liver flukes and Helicobacter pylori. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  PubMed  CAS  Google Scholar 

  • Keates S, Keates AC, Warny M et al (1999) Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag  +  and cag  −  Helicobacter pylori. J Immunol 163(10):5552–5559

    PubMed  CAS  Google Scholar 

  • Kempf AJ, Volkmann B, Schaller M et al (2001) Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol 3(9):623–632

    Article  PubMed  CAS  Google Scholar 

  • Keusch GT (1974) Opportunistic infection in colon carcinoma. Am J Clin Nutr 27(12):1481–1485

    PubMed  CAS  Google Scholar 

  • Knudtson LM, Hartman PA (1993) Comparison of fluorescent gentamicin thallous- carbonate and KF streptococcal agars to enumerate enterococci and fecal streptococci in meats. Appl Environ Microbiol 59(3):936–938

    PubMed  CAS  Google Scholar 

  • Kocazeybeck B (2003) Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case-control study. J Med Microbiol 52:721–726

    Article  Google Scholar 

  • Koyi H, Branden E, Gnarpe J et al (1999) Chlamydia pneumonia may be associated with lung cancer. Preliminary report on a seroepidemiological study. APMIS 107(9):828–832

    Article  PubMed  CAS  Google Scholar 

  • Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659(1–2):15–30

    PubMed  CAS  Google Scholar 

  • Kusters JG, van Vliet AHM, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori Infection. Clin Microbiol Rev 19(3):449–490

    Article  PubMed  CAS  Google Scholar 

  • Lax AJ, Grigoriadis AE (2001) Pasteurella multocida toxin: the mitogenic toxin that stimulates signalling cascades to regulate growth and differentiation. Int J Med Microbiol 291(4):261–268

    Article  PubMed  CAS  Google Scholar 

  • Lax AJ, Thomas W (2002) How bacteria could cause cancer: one step at a time. Trends Microbiol 10(6):293–299

    Article  PubMed  CAS  Google Scholar 

  • Lee WP, Tai DI, Lan KH et al (2005) The -251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. Clin Cancer Res 11(18):6431–6441

    Article  PubMed  CAS  Google Scholar 

  • Leport C, Bure A, Leport J et al (1987) Incidence of colonic lesions in Streptococcus bovis and enterococcal endocarditis. Lancet 1(8535):8748

    Google Scholar 

  • Litman AJ, White E, Jackson LA et al (2004) Chlamydia pneumonia infection and risk for lung cancer. Cancer Epidemiol Biomarkers Prev 13(10):1624–1630

    Google Scholar 

  • Litman AJ, Jackson LA, Vaughan TL (2005) Chlamydia pneumoniae and lung cancer. Epidemiologic Evidence 14(4):773–778

    Google Scholar 

  • Mager DL (2006) Bacteria and cancer: cause, coincidence or cure? a review. J Transl Med 4:14

    Article  PubMed  CAS  Google Scholar 

  • Marches O, Ledger TN, Boury M et al (2003) Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol 50(5):1553–1567

    Article  PubMed  CAS  Google Scholar 

  • McCoy WC, Mason JM (1951) Enterococcal endocarditis associated with carcinoma of the sigmoid: report of a case. J Med Assoc State Ala 21(6):162–166

    PubMed  CAS  Google Scholar 

  • McNamara D, El-Omar E (2008) Helicobacter pylori infection and the pathogenesis of gastric cancer: A paradigm for host–bacterial interactions. Dig Liver Dis 40:504–509

    Article  PubMed  CAS  Google Scholar 

  • Mitsuno Y, Yoshida H, Maeda S et al (2001) Helicobacter pylori induces transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut 49(1):18–22

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, Roberts RB (1978) Streptococcus bovis bacteremia and underlying gastrointestinal disease. Arch Intern Med 138(7):1097–1099

    Article  PubMed  CAS  Google Scholar 

  • Nath G, Singh YK, Kumar K et al (2008) Association of carcinoma of the gallbladder with typhoid carriage in a typhoid endemic area using nested PCR. J Infect Dev Ctries 2(4):302–307

    Article  PubMed  CAS  Google Scholar 

  • Nath G, Gulati AK, Shukla VK (2010) Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol 16(43):5395–5404

    Article  PubMed  Google Scholar 

  • Nougayrède JP, Taieb F, De Rycke J et al (2005) Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol 13(3):103–110

    Article  PubMed  Google Scholar 

  • Ohshima H, Sawa T, Akaike T (2006) 8-Nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid Redox Signal 8:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Parsonnet J, Hansen S, Rodriguez L et al (1994) Helicobacter pylori infection and gastric lymphoma. N Engl J Med 330(18):1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6(15):1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Pisani P, Parkin DM, Munoz N et al (1997) Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev 6(6):387–400

    PubMed  CAS  Google Scholar 

  • Ruoff KL, Miller SI, Garner CV et al (1989) Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates. J Clin Microbiol 27(2):305–308

    PubMed  CAS  Google Scholar 

  • Saccani S, Pantano S, Natoli G (2002) p38-Dependent marking of inflammatory genes for increased NF-kB recruitment. Nat Immunol 3(1):69–75

    Article  PubMed  CAS  Google Scholar 

  • Schlegel L, Grimont F, Ageron E et al (2003) Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonius subsp. nov. and Streptococcus gallolyticus subsp. Pasteurianus subsp.nov. Int J Syst Evol Microbiol 53:631–645

    Article  PubMed  CAS  Google Scholar 

  • Shenker BJ, McKay T, Datar S (1999) Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. J Immunol 162(8):4773–4780

    PubMed  CAS  Google Scholar 

  • Shukla VK, Singh H, Pandey M et al (2000) Carcinoma of the gallbladder-is it a sequel of typhoid? Dig Dis Sci 45(5):900–903

    Article  PubMed  CAS  Google Scholar 

  • Sipponen P, Kekki M, Haapakoski J et al (1985) Gastric cancer risk in chronic atrophic gastritis: statistical calculations of cross-sectional data. Int J Cancer 35(2):173–177

    Article  PubMed  CAS  Google Scholar 

  • Stinson MW, McLaughlin R, Choi SH et al (1998) Streptococcal histone-like protein: primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. Infect Immun 66(1):259–265

    PubMed  CAS  Google Scholar 

  • Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347(15):1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Sugai M, Hashimoto K, Kikuchi A et al (1992) Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J Biol Chem 267(4):2600–2604

    PubMed  CAS  Google Scholar 

  • Suzuki H, Minegishi Y, Nomoto Y et al (2005) Down-regulation of a morphogen (sonic hedgehog) gradient in the gastric epithelium of Helicobacter pylori-infected Mongolian gerbils. J Pathol 206(2):186–197

    Article  PubMed  CAS  Google Scholar 

  • Teitz S, Guidetti-Sharon A, Manor H et al (1995) Pyogenic liver absence: warning indication of silent colonic cancer. Report of a case and review of the literature. Dis Colon Rectum 38(11):1220–1223

    Article  PubMed  CAS  Google Scholar 

  • Thomas W, Pullinger GD, Lax AJ et al (2001) Escherichia coli cytotoxic necrotizing factor and Pasteurella multocida toxin induce focal adhesion kinase autophosphorylation and Src association. Infect Immun 69(9):5931–5935

    Article  PubMed  CAS  Google Scholar 

  • Tjalsma H, Guinard MS, Lasonder E et al (2006) Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis. Int J Cancer 119(9):2127–2135

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann R, Amieva MR (2007) The role of bacterial pathogens in cancer. Curr Opin Microbiol 10(1):76–81

    Article  PubMed  CAS  Google Scholar 

  • Waisberg J, de O Matheus C, Pimenta J (2002) Infectious endocarditis from Streptococcus bovis associated with colonic carcinoma: case report and literature review. Arq Gastroenterol 39(3):177–180

    Article  PubMed  Google Scholar 

  • Welton JC, Marr JS, Friedman SM (1979) Association between hepatobiliary cancer and typhoid carrier state. Lancet 1(8120):791–794

    Article  PubMed  CAS  Google Scholar 

  • Wendum D, Masliah J, Trugnan G et al (2004) Cyclooxygenase-2 and its role in colorectal cancer development. Virchows Arch 445(4):327–333

    Article  PubMed  CAS  Google Scholar 

  • Yagyu K, Kikuchi S, Obata Y (2008) Cigarette smoking, alcohol drinking and the risk of gallbladder cancer death: a prospective cohort study in Japan. Int J Cancer 122(4):924–929

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Verma UN, Prajapati S et al (2003) Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423(6940):655–659

    Article  PubMed  CAS  Google Scholar 

  • Yermilov V, Rubio J, Becchi M et al (1995) Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis 16(9):2045–2050

    Article  PubMed  CAS  Google Scholar 

  • Zur Hausen H (2006) Streptococcus bovis: casual or incidental involvement in cancer of the colon? Int J Cancer 119(9):xi–xii

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Puneet, Nath, G., Shukla, V.K. (2012). Possible Strategies of Bacterial Involvement in Cancer Development. In: Khan, A. (eds) Bacteria and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2585-0_7

Download citation

Publish with us

Policies and ethics